293 research outputs found

    Collagen Deposition During Wound Repair

    Get PDF
    Collagen fiber diameters, amount of birefringent collagen (brightness) and birefringence retardation were measured in implanted collagen-based sponges containing hyaluronic acid (HA) and fibronectin (FN). In the presence of HA and FN, increased number of fibroblasts and brightness were observed 6 days after wounding. Increased brightness in the presence of HA and FN reflected increased deposition of oriented collagen fibers. From days 9 to 12, increased fiber diameters were similar in implanted collagen-based sponges with or without HA and FN. Increased birefringence retardation in sponges containing HA and FN was consistent with increased packing density of collagen fibers observed by scanning electron microscopy. Our results suggest that HA and FN are effective in promoting fibroblast movement into a collagen sponge and deposition of collagen fibers during the early phases of wound healing. Use of a collagen-based sponge containing HA and FN may enhance collagen deposition in situations where healing is compromised as in the case of dermal ulcers

    Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications,

    Get PDF
    The extent to which collagen alignment occurs during dermal wound healing determines the severity of scar tissue formation. We have modelled this using a multiscale approach, in which extracellular materials, for example collagen and fibrin, are modelled as continua, while fibroblasts are considered as discrete units. Within this model framework, we have explored the effects that different parameters have on the alignment process, and we have used the model to investigate how manipulation of transforming growth factor-β levels can reduce scar tissue formation. We briefly review this body of work, then extend the modelling framework to investigate the role played by leucocyte signalling in wound repair. To this end, fibroblast migration and collagen deposition within both the wound region and healthy peripheral tissue are considered. Trajectories of individual fibroblasts are determined as they migrate towards the wound region under the combined influence of collagen/fibrin alignment and gradients in a paracrine chemoattractant produced by leucocytes. The effects of a number of different physiological and cellular parameters upon the collagen alignment and repair integrity are assessed. These parameters include fibroblast concentration, cellular speed, fibroblast sensitivity to chemoattractant concentration and chemoattractant diffusion coefficient. Our results show that chemoattractant gradients lead to increased collagen alignment at the interface between the wound and the healthy tissue. Results show that there is a trade-off between wound integrity and the degree of scarring. The former is found to be optimized under conditions of a large chemoattractant diffusion coefficient, while the latter can be minimized when repair takes place in the presence of a competitive inhibitor to chemoattractants

    Fibroblast and Epidermal Cell-Type I Collagen Interactions: Cell Culture and Human Studies

    Get PDF
    Fibroblast and epidermal cell-type I collagen sponge interactions were studied in cell culture as well as in humans. In cell culture, fibroblasts were observed to migrate and proliferate throughout a type I collagen sponge containing either hyaluronic acid (HA) or fibronectin (FN). Fibroblasts accumulated in the center of the pores in sponges containing HA and appeared to surround themselves with newly synthesized extracellular matrix. In sponges containing FN, fibroblasts attached to and elongated along the collagen fibers of the sponge. In the absence of FN or HA protein synthesis of fibroblasts appeared to be inhibited by the presence of the type I collagen sponge. Epidermal cells grown on plastic or on type I collagen, formed sheets. Epidermal cells grown on a collagen sponge morphologically appeared different than cells grown on plastic. The type I collagen matrix studied in cell culture was applied to dermal wounds of patients with pressure ulcers in order to evaluate its effect on dermal wound healing. The areas of ulcers treated for 6 weeks with a type I collagen sponge decreased by about 40% compared with no change in the areas of untreated controls. Preliminary results suggest that a type I collagen sponge is a biocornpatible substrate with fibroblasts and epidermal cells and may be effective in enhancing healing of chronic skin ulcers

    Surface topography of hydroxyapatite affects ROS17/2.8 cells response

    Get PDF
    Hydroxyapatite (HA) has been used in orthopedic, dental, and maxillofacial surgery as a bone substitute. The aim of this investigation was to study the effect of surface topography produced by the presence of microporosity on cell response, evaluating: cell attachment, cell morphology, cell proliferation, total protein content, and alkaline phosphatase (ALP) activity. HA discs with different percentages of microporosity (< 5%, 15%, and 30%) were confected by means of the combination of uniaxial powder pressing and different sintering conditions. ROS17/2.8 cells were cultured on HA discs. For the evaluation of attachment, cells were cultured for two hours. Cell morphology was evaluated after seven days. After seven and fourteen days, cell proliferation, total protein content, and ALP activity were measured. Data were compared by means of ANOVA and Duncan’s multiple range test, when appropriate. Cell attachment (p = 0.11) and total protein content (p = 0.31) were not affected by surface topography. Proliferation after 7 and 14 days (p = 0.0007 and p = 0.003, respectively), and ALP activity (p = 0.0007) were both significantly decreased by the most irregular surface (HA30). These results suggest that initial cell events were not affected by surface topography, while surfaces with more regular topography, as those present in HA with 15% or less of microporosity, favored intermediary and final events such as cell proliferation and ALP activity

    Clinical Applications of Electron Microscopy in the Analysis of Collagenous Biomaterials

    Get PDF
    Scanning and transmission electron microscopy are of clinical value in assessing the interaction between biomaterials and ingrowing tissues. Ultrastructural information allows the clinician and biomaterials specialist to determine events occurring during wound healing and the biocompatibility of prosthetic devices. This paper reviews some of the experimental and clinical studies done in our laboratory on the use of natural and reconstituted collagen as replacements for connective tissues. Consideration is given to collagen flakes used for the treatment of dermal ulcers, a collagen fiber prosthesis used for tendon and ligament replacement, the effects of chemical preservatives on cartilage used for replacement of tissues during plastic surgery and the growth and orientation of nerve cells on reconstituted collagen fibers. Our results show that reconstituted collagen can be prepared into prosthetic devices which encourage cell attachment and orientation thereby facilitating healing of injured tissues. Furthermore chemical preservation of cartilagenous tissues kills chondrocytes resulting in eventual resorption by inflammatory cells

    Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite

    Full text link
    Novel Cellulose (Cel) reinforced polyvinyl alcohol (PVA)-Silica (Si) composite which has good stability and in vitro degradation was prepared by lyophilization technique and implanted using N3+ ions of energy 24 keV in the fluences of 1 x 10(15), 5 x 10(15) and 1 x 10(16) ions/cm(2). SEM analysis revealed the formation of microstructures, and improved the surface roughness on ion implantation. In addition to these structural changes, the implantation significantly modified the luminescent, thermal and mechanical properties of the samples. The elastic modulus of the implanted samples has increased by about 50 times compared to the pristine which confirms that the stiffness of the sample surface has increased remarkably on ion implantation. The photoluminescence of the native cellulose has improved greatly due to defect site, dangling bonds and hydrogen passivation. Electric conductivity of the ion implanted samples was improved by about 25%. Hence, low energy ion implantation tunes the mechanical property, surface roughness and further induces the formation of nano structures. MG63 cells seeded onto the scaffolds reveals that with the increase in implantation fluence, the cell attachment, viability and proliferation have improved greatly compared to pristine. The enhancement of cell growth of about 59% was observed in the implanted samples compared to pristine. These properties will enable the scaffolds to be ideal for bone tissue engineering and imaging applications.G.M.S. acknowledges CSIR, India (Grant no: 09/468 (0474)/2013-EMR-I) and S.N.K. thanks the award of Erasmus-Mundus Svaagata for providing financial support to carry out this research. G.M.S., N.S. and S.N.K. acknowledge the support of UGC National facility for characterization facility. J.A.G.T. acknowledges the support of the Spanish Ministry of Economy and Competitiveness (MINECO) through the project DPI2015-65401-C3-2-R (including the FEDER financial support). CIBER-BBN, Spain is an initiative funded by the VI National R&D Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. AFM was conducted by the microscopy service of the UPV, whose advice was greatly appreciated.Shanthini, GM.; Sakthivel, N.; Menon, R.; Nabhiraj, PY.; Gómez-Tejedor, JA.; Meseguer Dueñas, JM.; Gómez Ribelles, JL.... (2016). Surface stiffening and enhanced photoluminescence of ion implanted cellulose - polyvinyl alcohol - silica composite. Carbohydrate Polymers. 153:619-630. https://doi.org/10.1016/j.carbpol.2016.08.016S61963015

    Multifunctional biomaterials from the sea: Assessing the effects of chitosan incorporation into collagen scaffolds on mechanical and biological functionality

    Get PDF
    Natural biomaterials such as collagen show promise in tissue engineering applications due to their inherent bioactivity. The main limitation of collagen is its low mechanical strength and somewhat unpredictable and rapid degradation rate; however, combining collagen with another material, such as chitosan, can reinforce the scaffold mechanically and may improve the rate of degradation. Additionally, the high cost and the risk of prion transmission associated with mammal-derived collagen has prompted research into alternative sources such as marine-origin collagen. In this context, the overall goal of this study was to determine if the incorporation of chitosan into collagen scaffolds could improve the mechanical and biological properties of the scaffold. In addition the study assessed if collagen, derived from salmon skin (marine), can provide an alternative to collagen derived from bovine tendon (mammal) for tissue engineering applications. Scaffold architecture and mechanical properties were assessed as well as their ability to support mesenchymal stem cell growth and differentiation. Overall, the addition of chitosan to bovine and salmon skin-derived collagen scaffolds improved the mechanical properties, increasing the compressive strength, swelling ratio and prolonged the degradation rate. Mesenchymal stem cell (MSC) attachment and proliferation was most improved on the bovine-derived collagen scaffold containing a 75:25 ratio of collagen:chitosan, and when MSC osteogenic and chondrogenic potential on the scaffold was assessed, a significant increase in calcium production (p < 0.001) and sulfated glycosaminoglycan (sGAG) production (p < 0.001) was observed respectively. Regardless of chitosan content, the bovine-derived collagen scaffolds out-performed the salmon skin-derived collagen scaffolds, displaying a larger pore size and higher percentage porosity, more regular architecture, higher compressive modulus, a greater capacity for water uptake and allowed for more MSC proliferation and differentiation. This versatile scaffold incorporating the marine biomaterial chitosan show great potential as appropriate platforms for promoting orthopaedic tissue repair while the use of salmon skin-derived collagen may be more suitable in the repair of soft tissues such as skin.This work was funded by Science Foundation Ireland (SFI) through the Research Frontiers Programme (Grant No. 11/RFP/ENM/3063) and by the European Regional Development Fund (ERDF) through INTERREG 2007-2013 Program (POCTEP project 0687_NOVOMAR_1_P). Bovine collagen materials were provided by Integra Life Sciences, Inc. through a Material Transfer Agreement. Salmon skins were kindly offered by Pingo Doce, Braga (Portugal)

    Remodelling of the angular collagen fiber distribution in cardiovascular tissues

    Get PDF
    Understanding collagen fiber remodelling is desired to optimize the mechanical conditioning protocols in tissue-engineering of load-bearing cardiovascular structures. Mathematical models offer strong possibilities to gain insight into the mechanisms and mechanical stimuli involved in these remodelling processes. In this study, a framework is proposed to investigate remodelling of angular collagen fiber distribution in cardiovascular tissues. A structurally based model for collagenous cardiovascular tissues is extended with remodelling laws for the collagen architecture, and the model is subsequently applied to the arterial wall and aortic valve. For the arterial wall, the model predicts the presence of two helically arranged families of collagen fibers. A branching, diverging hammock-type fiber architecture is predicted for the aortic valve. It is expected that the proposed model may be of great potential for the design of improved tissue engineering protocols and may give further insight into the pathophysiology of cardiovascular diseases
    corecore