675 research outputs found

    New Geologic Map of the Argyre Region of Mars: Deciphering the Geologic History Through Mars Global Surveyor, Mars Odyssey, and Mars Express Data

    Get PDF
    The primary objective of the mapping effort is to produce a geologic map of the Argyre basin and surrounding region at 1:5,000,000 scale in both digital and print formats that will detail the stratigraphic and crosscutting relations among rock materials and landforms (30 deg. S to 65 deg. S, 290 deg. E to 340 deg E). There has not been a detailed geologic map produced of the Argyre region since the Viking-era mapping investigation. The mapping tasks include stratigraphic mapping, crater counting, feature mapping, quantitative landform analysis, and spectroscopic/ stratigraphic investigation feature mapping. The regional geologic mapping investigation includes the Argyre basin floor and rim materials, the transition zone that straddles the Thaumasia plateau, which includes Argyre impactrelated modification, and the southeast margin of the Thaumasia plateau using important new data sets from the Mars Global Surveyor, Mars Odyssey, Mars Express, and Mars Reconnaissance Orbiter. The geologic information unfolded by this new mapping project will be useful to the community for constraining the regional geology, paleohydrology, and paleoclimate, which includes but is not limited to the assessment of: (1) whether the Argyre basin contained lakes, (2) the extent of reported flooding and glaciation, (3) existing interpretations of the origin of the narrow ridges located in the southeast part of the basin floor, and (4) the extent of Argyre-related tectonism and its influence on the surrounding regions

    Scaling of thermal conductivity of helium confined in pores

    Full text link
    We have studied the thermal conductivity of confined superfluids on a bar-like geometry. We use the planar magnet lattice model on a lattice H×H×LH\times H\times L with L≫HL \gg H. We have applied open boundary conditions on the bar sides (the confined directions of length HH) and periodic along the long direction. We have adopted a hybrid Monte Carlo algorithm to efficiently deal with the critical slowing down and in order to solve the dynamical equations of motion we use a discretization technique which introduces errors only O((δt)6)O((\delta t)^6) in the time step δt\delta t. Our results demonstrate the validity of scaling using known values of the critical exponents and we obtained the scaling function of the thermal resistivity. We find that our results for the thermal resistivity scaling function are in very good agreement with the available experimental results for pores using the tempComment: 5 two-column pages, 3 figures, Revtex

    Five-loop additive renormalization in the phi^4 theory and amplitude functions of the minimally renormalized specific heat in three dimensions

    Full text link
    We present an analytic five-loop calculation for the additive renormalization constant A(u,epsilon) and the associated renormalization-group function B(u) of the specific heat of the O(n) symmetric phi^4 theory within the minimal subtraction scheme. We show that this calculation does not require new five-loop integrations but can be performed on the basis of the previous five-loop calculation of the four-point vertex function combined with an appropriate identification of symmetry factors of vacuum diagrams. We also determine the amplitude functions of the specific heat in three dimensions for n=1,2,3 above T_c and for n=1 below T_c up to five-loop order. Accurate results are obtained from Borel resummations of B(u) for n=1,2,3 and of the amplitude functions for n=1. Previous conjectures regarding the smallness of the resummed higher-order contributions are confirmed. Borel resummed universal amplitude ratios A^+/A^- and a_c^+/a_c^- are calculated for n=1.Comment: 30 pages REVTeX, 3 PostScript figures, submitted to Phys. Rev.

    New Geologic Map of the Argyre Region of Mars

    Get PDF
    The new generation of Mars orbital topographic and imaging data justifies a new mapping effort of the Argyre impact basin and surroundings (-30.0deg to -65.0deg lat., -20.0deg to -70.0deg long; Fig.1). Our primary objective is to produce a geologic map of the Argyre region at 1:5,000,000 scale in both digital and print formats. The map will detail the stratigraphic and crosscutting relations among rock materials and landforms. These include Argyre basin infill, impact crater rim materials and adjoining highland materials of Noachis Terra, valleys and elongated basins that are radial and concentric about the primary Argyre basin, faults, enigmatic ridges, lobate debris aprons, and valley networks. Such information will be useful to the planetary science community for constraining the regional geology, paleohydrology, and paleoclimate. This includes the assessment of: (a) whether the Argyre basin contained lakes [1], (b) the extent of reported flooding and glaciation, which includes ancient flows of volatiles into the impact basin [2-4], (c) existing interpretations of the origin of the narrow ridges located in the southeast part of the basin floor [2,5], and (d) the extent of Argyre-related tectonism and its influence on the surrounding regions. Whereas the geologic mapping investigation of Timothy Parker focuses on the Argyre floor materials at 1:1,000,000 (MTMs -50036, -50043, -55036, -55043; see Fig. 1 for approximate corners of the area), our regional geologic mapping investigation includes the Argyre basin floor and rim materials, the transition zone that straddles the Thaumasia plateau, which includes Argyre impact-related modification [6], and the southeast margin of the Thaumasia plateau using important new data sets (Fig. 1). Our mapping effort will incorporate the map information of Parker if it is made available during the project

    Geologic controls of erosion and sedimentation on Mars

    Get PDF
    Because Mars has had a history of diverse erosional and depositional styles, a variety of erosional landforms and sedimentary deposits can be seen on Viking orbiter images. Here we review how geologic processes involving rock, water, and structure have controlled erosion and sedimentation on Mars. Additionally, we review how further studies will help refine our understanding of these processes
    • …
    corecore