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Introduction: On Earth, hydrostatic or closed pin-

gos are perennially ice-cored mounds that are diagnos-

tic of (a) ponded water (current or past); (b) freeze-

thaw cycles; and, (c) ice-rich, continuous permafrost 

[1-2]. 

          
Figure 1: Assemblage of closed-pingos, Tuktoyak- 

tuk Coastlands, northern Canada. Thermokarst lakes en- 

velope the pingos; small-sized (and unsorted) polygonal pat-

terned-ground is ubiquitous (air photo A2797-35-1993,  

National Air Photo Library, Ottawa, Canada). 
 

Similar environmental conditions could be deduced 

were closed pingos observed on Mars [3-9]. Moreover, 

if these landforms were to occur on very late Amazo-

nian rock materials, this would point to relatively re-

cent boundary conditions of temperature and atmos-

pheric pressure that are higher than many workers have 

thought possible.  

In 2005 we used a small set of MOC images to de-

scribe two crater-floor landscapes in northern Utopia 

Planitia (UP) where mounds consistent in appearance, 

distribution and geological traits with closed pingos on 

Earth, at least those located in the Tuktoyaktuk Coast-

lands (TC) of northern Canada, were observed [3-4]. 

Based on HiRISE and MOC images, (not available at 

the time of our earlier work) we revisit the closed 

pingo hypothesis and do two things. First, we broaden 

the scope of the pingo hypothesis by integrating the 

observations of four other crater-floor landscapes with 

similar mounds. Interestingly, each of these craters are 

located within a tight latitudinal band (64.5-68.9
0 

N). 

Second, we link the atmospheric processes that could 

be responsible for the formation of crater-based peren-

nial ice-domes at latitudes 70
°
 N [10] to the em-

placement of water-ice (and the subsequent formation 

of crater-based paleolakes) at the lower latitudes where 

the putative pingos have been observed.  

Mound morphology and traits (Mars) (Fig. 2): 

The Martian crater-floor mounds are elongate to circu-

lar/sub-circular; they range in diameter from tens to 

hundreds of metres and are clustered (2.5 

mounds/km
2
) at or near the floor centres. A few of the 

mounds display a ring-like appearance. All of the 

mounds are nested in small-sized (25-150 m in di-

ameter) polygonal patterned-ground that is unsorted. 

Some of the polygons exhibit an orthogonal orientation 

around the mounds; others, cross-cut the mounds.  

           

Figure 2: Crater-floor mounds in a field of small-sized and un-

sorted polygonal patterned-ground. El Maarry et al. [11] have sug-

gested that the size, type and location of these polygons  

could be indicative of endogenic paleolakes  

(PSP_007780 _2450_RED, 64.5° N; 67.3° E). 
 

Pingo morphology and traits (Earth):. Closed 

pingos range in shape from elongate to circular/sub-

circular; diameters vary from a few to hundreds of 

metres. Often, as is the case in the TC, closed pingos 

occur in the midst of thermokarst lakes (extant or ex-

tinct). Where summit collapse has occurs, the pingos 

may appear ring-like. Commonly, the mounds occur in 

consolidated networks of small-sized (25-75 m in 

diameter) and unsorted polygonal patterned-ground. 

Sometimes, these polygons cross-cut the mounds 

Pingo origin (Earth): In the TC, a region charac-

terised by continuous and ice-rich permafrost, pingo 

genesis is tied closely to the loss of water by drainage 

or evaporation in thermokarst lakes [1]. As a thermo-

karst lake loses its water, the exposure of saturated but 

previously unfrozen lake-floor sediments to new, 

colder boundary conditions induces these sediments to 

freeze (by permafrost aggradation); subsequently, the 

ground is deformed upwardly by means of hydrostatic 

pressure. Eventually, this forms a domed struc-

ture/mound underlain by an ice core. Although unre-

lated in origin, small-sized (thermal contraction) and 

unsorted polygonal patterned-ground is a common-
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place characteristic of permafrost terrain where closed 

pingos occur [1]. Polygonal patterned-ground that is 

orthogonal in orientation may develop when the loss of 

water in a lake basin where a pingo forms is episodic 

[13].  

Closed pingos in UP?:The Martian mounds ap-

proximate terrestrial closed-pingos (of the TC type) in 

size, shape, ring-like appearance (sometimes) and spa-

tial association with unsorted and polygonal patterned-

ground. Interestingly, the mounds show dense cluster-

ing that is similar to that of the closed pingos in the 

TC; also, they are located at or near the centre of im-

pact-crater floors, precisely where one would expect 

them to be on the basis of the TC model.  

Crater-based paleolakes: All but two of the 

mound craters are included in a recent survey of puta-

tive crater-based paleolakes [11]. The occurrence of 

these paleolakes is deduced from the polygon type 

found in these craters, which is consistent with a desic-

cation origin [11]. Our craters occur within a narrow 

band of these paleolakes around the polar cap (Fig. 3). 

     
Figure 3: Map of different crater types, north polar region, Mars. 

 

Periglacial mound origin: Since 2005, the possi-

bility that closed pingos could have formed in UP late 

in the Amazonian Period has been widely discussed in 

the literature [3-9]. As noted above, the origin and de-

velopment of closed pingos requires a) the occurrence 

of near-surface ice-rich regolith; and, b) pre-cursor 

boundary conditions above the triple point of water. 

The first criteria can be met as near-surface ground ice 

is thought to be ubiquitous throughout the high north-

ern-latitudes [14-15]; the origin and/or recharge of 

ground-ice at these latitudes could be supplied by wa-

ter-vapour laden winds that flow from the north pole 

[11]. Cold trapped by craters, this vapour might sup-

port the formation of perennial ice-domes, summer ice 

[11] and, possibly, of ice in those craters where our 

mounds occur (Fig. 3). Under past orbital solutions 

consistent with thaw processes [16], this crater-based 

ice could have thawed, forming paleolakes in situ; in 

turn, this might have triggered a series of periglacial 

events that led to the formation of closed pingos. Such 

conditions have been previously invoked to explain the 

enigmatic occurrence of gullies at these latitudes [17]. 

Alternative hypothesis #1: Central uplift com-

plexes occur in Martian craters above 8 km in diame-

ter [18]. Using MOLA data we have created crater 

profiles to evaluate whether the crater-based mounds 

are central peaks that have been covered in sedimen-

tary material [12]. By calculating the fill level in the 

mound craters, we have found that this is approxi-

mately equal to that of the surrounding plains [12]. 

This places the mounds well above the heights esti-

mated for central peaks in these craters [18].  

Alternative hypothesis #2: Impact-related hydro-

thermal activity [19] could be the progenitor of the 

crater-floor mounds. For example, amongst the geo-

logical traits observed at the Hesperian-aged Toro im-

pact crater (17.0
0
 E; 289.2

0 
N) are mounds, polygonal 

fractures, veins and structural discontinuities that could 

be the result of volatile release and/or liquid flows [20-

21]. Distinctive mineralogy and abundances of hy-

drated phases in and around the central uplift complex, 

perhaps associated with impact-melt bearing crater-fill 

deposits, also are consistent with a hydrothermal origin 

[20]. By contrast, the crater-fill in the UP mound cra-

ters post-dates the impact-formation of these craters 

and, thus, cannot be a product of impact-related hydro-

thermal processes. Moreover, were the mounds geo-

logical artefacts of impact-related processes, they 

would occur at or near the “true” crater floor and not at 

their current elevation datum.  

Discussion: In terms of morphology, size, density 

of distribution and spatial association with small-sized 

polygons, the crater-floor mounds of northern UP ap-

proximate closed pingos such as those observed in the 

TC. Recent hypotheses linking a) crater-floor polygons 

to desiccated paleolakes; b) water-vapour laden winds 

to the accumulation of crater-based ice; and, c) thaw 

conditions rooted in past orbital solutions, bolster the 

viability of this interpretation. 
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