8,725 research outputs found

    Magnetic Trapping of Cold Bromine Atoms

    Full text link
    Magnetic trapping of bromine atoms at temperatures in the milliKelvin regime is demonstrated for the first time. The atoms are produced by photodissociation of Br2_2 molecules in a molecular beam. The lab-frame velocity of Br atoms is controlled by the wavelength and polarization of the photodissociation laser. Careful selection of the wavelength results in one of the pair of atoms having sufficient velocity to exactly cancel that of the parent molecule, and it remains stationary in the lab frame. A trap is formed at the null point between two opposing neodymium permanent magnets. Dissociation of molecules at the field minimum results in the slowest fraction of photofragments remaining trapped. After the ballistic escape of the fastest atoms, the trapped slow atoms are only lost by elastic collisions with the chamber background gas. The measured loss rate is consistent with estimates of the total cross section for only those collisions transferring sufficient kinetic energy to overcome the trapping potential

    Continuous quantum non-demolition measurement of Fock states of a nanoresonator using feedback-controlled circuit QED

    Get PDF
    We propose a scheme for the quantum non-demolition (QND) measurement of Fock states of a nanomechanical resonator via feedback control of a coupled circuit QED system. A Cooper pair box (CPB) is coupled to both the nanoresonator and microwave cavity. The CPB is read-out via homodyne detection on the cavity and feedback control is used to effect a non-dissipative measurement of the CPB. This realizes an indirect QND measurement of the nanoresonator via a second-order coupling of the CPB to the nanoresonator number operator. The phonon number of the Fock state may be determined by integrating the stochastic master equation derived, or by processing of the measurement signal.Comment: 5 pages, 3 figure

    Supporting security-oriented, collaborative nanoCMOS electronics research

    Get PDF
    Grid technologies support collaborative e-Research typified by multiple institutions and resources seamlessly shared to tackle common research problems. The rules for collaboration and resource sharing are commonly achieved through establishment and management of virtual organizations (VOs) where policies on access and usage of resources by collaborators are defined and enforced by sites involved in the collaboration. The expression and enforcement of these rules is made through access control systems where roles/privileges are defined and associated with individuals as digitally signed attribute certificates which collaborating sites then use to authorize access to resources. Key to this approach is that the roles are assigned to the right individuals in the VO; the attribute certificates are only presented to the appropriate resources in the VO; it is transparent to the end user researchers, and finally that it is manageable for resource providers and administrators in the collaboration. In this paper, we present a security model and implementation improving the overall usability and security of resources used in Grid-based e-Research collaborations through exploitation of the Internet2 Shibboleth technology. This is explored in the context of a major new security focused project at the National e-Science Centre (NeSC) at the University of Glasgow in the nanoCMOS electronics domain

    Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model

    Get PDF
    The impact of convection on tropospheric O<sub>3</sub> and its precursors has been examined in a coupled chemistry-climate model. There are two ways that convection affects O<sub>3</sub>. First, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> itself. Convection lifts lower tropospheric air to regions where the O<sub>3</sub> lifetime is longer, whilst mass-balance subsidence mixes O<sub>3</sub>-rich upper tropospheric (UT) air downwards to regions where the O<sub>3</sub> lifetime is shorter. This tends to decrease UT O<sub>3</sub> and the overall tropospheric column of O<sub>3</sub>. Secondly, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> precursors. This affects O<sub>3</sub> chemical production and destruction. Convection transports isoprene and its degradation products to the UT where they interact with lightning NO<sub>x</sub> to produce PAN, at the expense of NO<sub>x</sub>. In our model, we find that convection reduces UT NO<sub>x</sub> through this mechanism; convective down-mixing also flattens our imposed profile of lightning emissions, further reducing UT NO<sub>x</sub>. Over tropical land, which has large lightning NO<sub>x</sub> emissions in the UT, we find convective lofting of NO<sub>x</sub> from surface sources appears relatively unimportant. Despite UT NO<sub>x</sub> decreases, UT O<sub>3</sub> production increases as a result of UT HO<sub>x</sub> increases driven by isoprene oxidation chemistry. However, UT O<sub>3</sub> tends to decrease, as the effect of convective overturning of O<sub>3</sub> itself dominates over changes in O<sub>3</sub> chemistry. Convective transport also reduces UT O<sub>3</sub> in the mid-latitudes resulting in a 13% decrease in the global tropospheric O<sub>3</sub> burden. These results contrast with an earlier study that uses a model of similar chemical complexity. Differences in convection schemes as well as chemistry schemes &ndash; in particular isoprene-driven changes are the most likely causes of such discrepancies. Further modelling studies are needed to constrain this uncertainty range

    Federated authentication and authorisation for e-science

    Get PDF
    The Grid and Web service community are defining a range of standards for a complete solution for security. The National e-Science Centre (NeSC) at the University of Glasgow is investigating how the various pre-integration components work together in a variety of e-Science projects. The EPSRC-funded nanoCMOS project aims to allow electronics designers and manufacturers to use e-Science technologies and expertise to solve problems of device variability and its impact on system design. To support the security requirements of nanoCMOS, two NeSC projects (VPMan and OMII-SP) are providing tools to allow easy configuration of security infrastructures, exploiting previous successful projects using Shibboleth and PERMIS. This paper presents the model in which these tools interoperate to provide secure and simple access to Grid resources for non-technical users

    Vastus medialis motor unit properties in knee osteoarthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Maximal isometric quadriceps strength deficits have been widely reported in studies of knee osteoarthritis (OA), however little is known about the effect of osteoarthritis knee pain on submaximal quadriceps neuromuscular function. The purpose of this study was to measure vastus medialis motor unit (MU) properties in participants with knee OA, during submaximal isometric contractions.</p> <p>Methods</p> <p>Vastus medialis motor unit potential (MUP) parameters were assessed in 8 patients with knee OA and 8 healthy, sex and age-matched controls during submaximal isometric contractions (20% of maximum isometric torque). Unpaired t-tests were used to compare groups for demographic and muscle parameters.</p> <p>Results</p> <p>Maximum knee extension torque was ~22% lower in the OA group, a difference that was not statistically significantly (p = 0.11). During submaximal contractions, size related parameters of the needle MUPs (e.g. negative peak duration and amplitude-to-area ratio) were greater in the OA group (p < 0.05), with a rightward shift in the frequency distribution of surface MUP negative peak amplitude. MUP firing rates were significantly lower in the OA group (p < 0.05).</p> <p>Conclusions</p> <p>Changes in MU recruitment and rate coding strategies in OA may reflect a chronic reinnervation process or a compensatory strategy in the presence of chronic knee pain associated with OA.</p

    On the suppression of the diffusion and the quantum nature of a cavity mode. Optical bistability; forces and friction in driven cavities

    Full text link
    A new analytical method is presented here, offering a physical view of driven cavities where the external field cannot be neglected. We introduce a new dimensionless complex parameter, intrinsically linked to the cooperativity parameter of optical bistability, and analogous to the scaled Rabbi frequency for driven systems where the field is classical. Classes of steady states are iteratively constructed and expressions for the diffusion and friction coefficients at lowest order also derived. They have in most cases the same mathematical form as their free-space analog. The method offers a semiclassical explanation for two recent experiments of one atom trapping in a high Q cavity where the excited state is significantly saturated. Our results refute both claims of atom trapping by a quantized cavity mode, single or not. Finally, it is argued that the parameter newly constructed, as well as the groundwork of this method, are at least companions of the cooperativity parameter and its mother theory. In particular, we lay the stress on the apparently more fundamental role of our structure parameter.Comment: 24 pages, 7 figures. Submitted to J. Phys. B: At. Mol. Opt. Phy

    On-Chip Microwave Quantum Hall Circulator

    Full text link
    Circulators are non-reciprocal circuit elements integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their non-reciprocity arises from the interference of microwaves over the centimetre-scale of the signal wavelength in the presence of bulky magnetic media that break time-reversal symmetry. Here we realize a completely passive on-chip microwave circulator with size one-thousandth the wavelength by exploiting the chiral, slow-light response of a 2-dimensional electron gas (2DEG) in the quantum Hall regime. For an integrated GaAs device with 330 um diameter and 1 GHz centre frequency, a non-reciprocity of 25 dB is observed over a 50 MHz bandwidth. Furthermore, the direction of circulation can be selected dynamically by varying the magnetic field, an aspect that may enable reconfigurable passive routing of microwave signals on-chip
    corecore