6,483 research outputs found

    Interface roughening with nonlinear surface tension

    Full text link
    Using stability arguments, this Brief Report suggests that a term that enhances the surface tension in the presence of large height fluctuations should be included in the Kardar-Parisi-Zhang equation. A one-loop renormalization group analysis then shows for interface dimensions larger than 3.3\simeq 3.3 an unstable strong-coupling fixed point that enters the system from infinity. The relevance of these results to the roughening transition is discussed.Comment: 4 pages RevTeX, 1 figur

    Glassy Solutions of the Kardar-Pasrisi-Zhang Equation

    Full text link
    It is shown that the mode-coupling equations for the strong-coupling limit of the KPZ equation have a solution for d>4 such that the dynamic exponent z is 2 (with possible logarithmic corrections) and that there is a delta function term in the height correlation function = (A/k^{d+4-z}) \delta(w/k^z) where the amplitude A vanishes as d -> 4. The delta function term implies that some features of the growing surface h(x,t) will persist to all times, as in a glassy state.Comment: 11 pages, Revtex, 1 figure available upon request (same as figure 1 in ref [10]) Important corrections have been made which yield a much simpler picture of what is happening. We still find "glassy" solutions for d>4 where z is 2 (with possible logarithmic corrections). However, we now find no glassy solutions below d=4. A (linear) stability analysis (for d>4) has been included. Also one Author has been adde

    Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer

    Get PDF
    Background: ATR-Chk1 signalling network is critical for genomic stability. ATR-Chk1 may be deregulated in breast cancer and have prognostic, predictive and therapeutic significance. Patients and methods: We investigated ATR and phosphorylated CHK1Ser345 protein (pChk1) expression in 1712 breast cancers (Nottingham Tenovus series). ATR and Chk1 mRNA were evaluated in 1950 breast cancers (METABRIC cohort). Pre-clinically, biological consequences of ATR gene knockdown or ATR inhibition by small molecule inhibitor (VE-821) were investigated in MCF-7 and MDA-MB-231 breast cancer cell lines and in non-tumorigenic breast epithelial cells (MCF10A). Results: High ATR and high cytoplasmic pChk1 expression was significantly associated with higher tumour stage, higher mitotic index, pleomorphism and lymphovascular invasion. In univariate analysis, high ATR and high cytoplasmic pChk1 protein expression was associated with shorter breast cancer specific survival (BCSS). In multivariate analysis, high ATR remains an independent predictor of adverse outcome. At the mRNA level, high Chk1 remains associated with aggressive phenotypes including lymph node positivity, high grade, Her-2 overexpression, triple-negative phenotype and molecular classes associated with aggressive behaviour and shorter survival.. Pre-clinically, Chk1 phosphorylation at serine 345 following replication stress (induced by gemcitabine or hydroxyurea treatment) was impaired in ATR knockdown and in VE-821 treated breast cancer cells. Doxycycline inducible knockdown of ATR suppressed growth, which was restored when ATR was re-expressed. Similarly, VE-821 treatment resulted in a dose dependent suppression of cancer cell growth and survival (MCF7 and MDA-MB-231) but had no effect on non-tumorigenic breast epithelial cells (MCF10A). Conclusions: We provides evidence that ATR and Chk1 are promising biomarkers and rational drug target for personalized therapy in breast cancer

    Frequency Tracking and Parameter Estimation for Robust Quantum State-Estimation

    Full text link
    In this paper we consider the problem of tracking the state of a quantum system via a continuous measurement. If the system Hamiltonian is known precisely, this merely requires integrating the appropriate stochastic master equation. However, even a small error in the assumed Hamiltonian can render this approach useless. The natural answer to this problem is to include the parameters of the Hamiltonian as part of the estimation problem, and the full Bayesian solution to this task provides a state-estimate that is robust against uncertainties. However, this approach requires considerable computational overhead. Here we consider a single qubit in which the Hamiltonian contains a single unknown parameter. We show that classical frequency estimation techniques greatly reduce the computational overhead associated with Bayesian estimation and provide accurate estimates for the qubit frequencyComment: 6 figures, 13 page

    SYNTHESIS AND FABRICATION OF REFRACTORY URANIUM COMPOUNDS. Monthly Progress Report No. 8 for April 1 through April 31, 1960

    Full text link
    The effort on uranium silicide during the repent period was equally divided between synthesis and fabrication. The goal for the synthesizing effort was to make U/sub 3/8i/sub 2/ of higher purity than that made in the past, and the goal for the fabrication effort was to make pellets of density higher than 93%. Both goals were achieved. Experiments in simultaneous synthesis and fabrication of uranium monocarbide are reported in which mixtures of uranium powder and carbon were hot pressed. Sintering experiments on uranium monocarbide produced pellets of 91 to 91% theoretical density; however, cracking and oxidation were observed. Further experiments are planned in which oxidation will be reduced to a minimum. (J.R.D.

    Coupled non-equilibrium growth equations: Self-consistent mode coupling using vertex renormalization

    Get PDF
    We find that studying the simplest of the coupled non-equilibrium growth equations of Barabasi by self-consistent mode coupling requires the use of dressed vertices. Using the vertex renormalization, we find a roughness exponent which already in the leading order is quite close to the numerical value.Comment: 7 pages, 3 figure

    Continuous Quantum Measurement and the Quantum to Classical Transition

    Get PDF
    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. {\bf 85}, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes which affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit. First, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion.Comment: 12 pages, 4 figures, Revtex
    corecore