6,082 research outputs found

    Two-qutrit Entanglement Witnesses and Gell-Mann Matrices

    Full text link
    The Gell-Mann λ\lambda matrices for Lie algebra su(3) are the natural basis for the Hilbert space of Hermitian operators acting on the states of a three-level system(qutrit). So the construction of EWs for two-qutrit states by using these matrices may be an interesting problem. In this paper, several two-qutrit EWs are constructed based on the Gell-Mann matrices by using the linear programming (LP) method exactly or approximately. The decomposability and non-decomposability of constructed EWs are also discussed and it is shown that the λ\lambda-diagonal EWs presented in this paper are all decomposable but there exist non-decomposable ones among λ\lambda-non-diagonal EWs.Comment: 25 page

    Adaptive homodyne measurement of optical phase

    Get PDF
    We present an experimental demonstration of the power of real-time feedback in quantum metrology, confirming a theoretical prediction by Wiseman regarding the superior performance of an adaptive homodyne technique for single-shot measurement of optical phase. For phase measurements performed on weak coherent states with no prior knowledge of the signal phase, we show that the variance of adaptive homodyne estimation approaches closer to the fundamental quantum uncertainty limit than any previously demonstrated technique. Our results underscore the importance of real-time feedback for reaching quantum performance limits in coherent telecommunication, precision measurement and information processing.Comment: RevTex4, color PDF figures (separate files), submitted to PR

    Transition of the Stellar Initial Mass Function Explored with Binary Population Synthesis

    Get PDF
    The stellar initial mass function (IMF) plays a crucial role in determining the number of surviving stars in galaxies, the chemical composition of the interstellar medium, and the distribution of light in galaxies. A key unsolved question is whether the IMF is universal in time and space. Here we use state-of-the-art results of stellar evolution to show that the IMF of our Galaxy made a transition from an IMF dominated by massive stars to the present-day IMF at an early phase of the Galaxy formation. Updated results from stellar evolution in a wide range of metallicities have been implemented in a binary population synthesis code, and compared with the observations of carbon-enhanced metal-poor (CEMP) stars in our Galaxy. We find that applying the present-day IMF to Galactic halo stars causes serious contradictions with four observable quantities connected with the evolution of AGB stars. Furthermore, a comparison between our calculations and the observations of CEMP stars may help us to constrain the transition metallicity for the IMF which we tentatively set at [Fe/H] = -2. A novelty of the current study is the inclusion of mass loss suppression in intermediate-mass AGB stars at low-metallicity. This significantly reduces the overproduction of nitrogen-enhanced stars that was a major problem in using the high-mass star dominated IMF in previous studies. Our results also demonstrate that the use of the present day IMF for all time in chemical evolution models results in the overproduction of Type I.5 supernovae. More data on stellar abundances will help to understand how the IMF has changed and what caused such a transition.Comment: 8 pages, 2 figures, accepted by MNRAS Lette

    How Polarized Have We Become? A Multimodal Classification of Trump Followers and Clinton Followers

    Full text link
    Polarization in American politics has been extensively documented and analyzed for decades, and the phenomenon became all the more apparent during the 2016 presidential election, where Trump and Clinton depicted two radically different pictures of America. Inspired by this gaping polarization and the extensive utilization of Twitter during the 2016 presidential campaign, in this paper we take the first step in measuring polarization in social media and we attempt to predict individuals' Twitter following behavior through analyzing ones' everyday tweets, profile images and posted pictures. As such, we treat polarization as a classification problem and study to what extent Trump followers and Clinton followers on Twitter can be distinguished, which in turn serves as a metric of polarization in general. We apply LSTM to processing tweet features and we extract visual features using the VGG neural network. Integrating these two sets of features boosts the overall performance. We are able to achieve an accuracy of 69%, suggesting that the high degree of polarization recorded in the literature has started to manifest itself in social media as well.Comment: 16 pages, SocInfo 2017, 9th International Conference on Social Informatic

    Feedback cooling of a nanomechanical resonator

    Get PDF
    Cooled, low-loss nanomechanical resonators offer the prospect of directly observing the quantum dynamics of mesoscopic systems. However, the present state of the art requires cooling down to the milliKelvin regime in order to observe quantum effects. Here we present an active feedback strategy based on continuous observation of the resonator position for the purpose of obtaining these low temperatures. In addition, we apply this to an experimentally realizable configuration, where the position monitoring is carried out by a single-electron transistor. Our estimates indicate that with current technology this technique is likely to bring the required low temperatures within reach.Comment: 10 pages, RevTex4, 4 color eps figure

    Public Art and Local Civic Engagement, Final Report

    Get PDF
    Executive Summary This report compares the cultural value of two public artworks – Alex Hartley’s durational, dispersed Nowhereisland and Damien Hirst’s permanent, single-sited Verity that arrived in Ilfracombe in 2012. It assesses their contribution to reflective and engaged citizenship, local identity, regeneration, cultural tourism and legacy. The study responded to a methodological gap by developing a group-based participatory method - the visual matrix - that enables participants to express affective, aesthetic and cognitive experience of public art. The study compares methods and findings and triangulates with interviews and media analysis. Part 1 discusses the research methods and compares results. Part 2 discusses theoretical and conceptual foundations and analysis of the visual matrix, drawing on Alfred Lorenzer’s depth hermeneutics, the Deleuzian metaphor of rhizomatic thinking, Wilfred Bion’s conceptualization of reverie and containment and Donald Winnicott’s theorisation of transitional phenomena. In Part 3 benefits and limitations of the methodologies and their applications are discussed. It concludes that the visual matrix is a highly effective method of understanding participants’ experiences of public art because it is led by imagery and affect. The shared context and associative thinking of the visual matrix enables participants to articulate responses that people often find difficult to express. It produces strikingly different results to methods that rely on discourse, and is able to account for emotional and aesthetic reception of an artwork as well as the social processes it sets in motion and otherwise intangible aspects of impact and legacy. It is particularly useful for researching or evaluating complex, durational projects with multiple entry points. This study therefore has significant implications for how such artworks can be evaluated to capture dimensions that are not easily assessed by other methods and so inform the commissioning of public art

    Chlamydia pneumoniae-induced foam cell formation requires MyD88-dependent and -independent signaling and is reciprocally modulated by liver X receptor activation.

    Get PDF
    Chlamydia pneumoniae is detected by macrophages and other APCs via TLRs and can exacerbate developing atherosclerotic lesions, but how that occurs is not known. Liver X receptors (LXRs) centrally control reverse cholesterol transport, but also negatively modulate TLR-mediated inflammatory pathways. We isolated peritoneal macrophages from wild-type, TLR2, TLR3, TLR4, TLR2/4, MyD88, TRIF, MyD88/TRIF, and IFN regulatory factor 3 (IRF3) KO mice, treated them with live or UV-killed C. pneumoniae in the presence or absence of oxidized LDL, then measured foam cell formation. In some experiments, the synthetic LXR agonist GW3965 was added to macrophages infected with C. pneumoniae in the presence of oxidized LDL. Both live and UV-killed C. pneumoniae induced IRF3 activation and promoted foam cell formation in wild-type macrophages, whereas the genetic absence of TLR2, TLR4, MyD88, TRIF, or IRF3, but not TLR3, significantly reduced foam cell formation. C. pneumoniae-induced foam cell formation was significantly reduced by the LXR agonist GW3965, which in turn inhibited C. pneumoniae-induced IRF3 activation, suggesting a bidirectional cross-talk. We conclude that C. pneumoniae facilitates foam cell formation via activation of both MyD88-dependent and MyD88-independent (i.e., TRIF-dependent and IRF3-dependent) pathways downstream of TLR2 and TLR4 signaling and that TLR3 is not involved in this process. This mechanism could at least partly explain why infection with C. pneumoniae accelerates the development of atherosclerotic plaque and lends support to the proposal that LXR agonists might prove clinically useful in suppressing atherogenesis
    corecore