1,179 research outputs found

    Neuroactive Steroids Reverse Tonic Inhibitory Deficits in Fragile X Syndrome Mouse Model

    Get PDF
    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. A reduction in neuronal inhibition mediated by γ-aminobutyric acid type A receptors (GABAARs) has been implicated in the pathophysiology of FXS. Neuroactive steroids (NASs) are known allosteric modulators of GABAAR channel function, but recent studies from our laboratory have revealed that NASs also exert persistent metabotropic effects on the efficacy of tonic inhibition by increasing the protein kinase C (PKC)-mediated phosphorylation of the α4 and β3 subunits which increase the membrane expression and boosts tonic inhibition. We have assessed the GABAergic signaling in the hippocampus of fragile X mental retardation protein (FMRP) knock-out (Fmr1 KO) mouse. The GABAergic tonic current in dentate gyrus granule cells (DGGCs) from 3- to 5-week-old (p21–35) Fmr1 KO mice was significantly reduced compared to WT mice. Additionally, spontaneous inhibitory post synaptic inhibitory current (sIPSC) amplitudes were increased in DGGCs from Fmr1 KO mice. While sIPSCs decay in both genotypes was prolonged by the prototypic benzodiazepine diazepam, those in Frm1-KO mice were selectively potentiated by RO15-4513. Consistent with this altered pharmacology, modifications in the expression levels and phosphorylation of receptor GABAAR subtypes that mediate tonic inhibition were seen in Fmr1 KO mice. Significantly, exposure to NASs induced a sustained elevation in tonic current in Fmr1 KO mice which was prevented with PKC inhibition. Likewise, exposure reduced elevated membrane excitability seen in the mutant mice. Collectively, our results suggest that NAS act to reverse the deficits of tonic inhibition seen in FXS, and thereby reduce aberrant neuronal hyperexcitability seen in this disorder

    Operations Based Optimisation Using Simulation and CFD

    Get PDF
    An initial investigation of an optimisation based approach for design across a continuous range of operating conditions is presented. The objective for this 'operations based optimisation' approach is to avoid the need to choose critical design point conditions and associated weighting factors by tackling the overall operational performance instead. The approach integrates numerical optimisation, response surface modelling, CFD and operational simulation. An optimisation test bed involving the aerodynamic optimisation of a Champ Car rear wing assembly for reduced lap time using track simulation has been developed to assess the new optimisation approach. Details of the operations based optimisation approach and the Champ Car test bed are reported. Results generated using the new approach are presented and the wider potential of the approach for aerospace applications is discussed

    National active surveillance to understand and inform neonatal care in COVID-19.

    Get PDF
    The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 and has spread rapidly. COVID-19 was declared a pandemic by the WHO on 12 March 2020. Robust, population-based data describing COVID-19 during pregnancy and the neonatal period are critical to understand and manage this global threat in these groups

    Safety and anti-tumour activity of the IgE antibody MOv18 in patients with advanced solid tumours expressing folate receptor-alpha: a phase I trial

    Get PDF
    All antibodies approved for cancer therapy are monoclonal IgGs but the biology of IgE, supported by comparative preclinical data, offers the potential for enhanced effector cell potency. Here we report a Phase I dose escalation trial (NCT02546921) with the primary objective of exploring the safety and tolerability of MOv18 IgE, a chimeric first-in-class IgE antibody, in patients with tumours expressing the relevant antigen, folate receptor-alpha. The trial incorporated skin prick and basophil activation tests (BAT) to select patients at lowest risk of allergic toxicity. Secondary objectives were exploration of anti-tumour activity, recommended Phase II dose, and pharmacokinetics. Dose escalation ranged from 70 μg–12 mg. The most common toxicity of MOv18 IgE is transient urticaria. A single patient experienced anaphylaxis, likely explained by detection of circulating basophils at baseline that could be activated by MOv18 IgE. The BAT assay was used to avoid enrolling further patients with reactive basophils. The safety profile is tolerable and maximum tolerated dose has not been reached, with evidence of anti-tumour activity observed in a patient with ovarian cancer. These results demonstrate the potential of IgE therapy for cancer

    Duodenal enteroglucagonoma revealed by differential comparison of serum and tissue glucagon reactivity with Siemens' Double Glucagon Antibody and DakoCytomation's Polyclonal Rabbit Anti-Human Glucagon: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>This case report demonstrates that the differential immunohistochemical reactivities of Siemens' <it>Double Antibody Glucagon </it>compared to DakoCytomation's <it>Polyclonal Rabbit Anti-Human Glucagon </it>allow for pathologic distinction of enteral versus pancreatic glucagonoma.</p> <p>Case presentation</p> <p>A 64-year-old Caucasian man was diagnosed with a duodenal enteroglucagonoma following presentation with obstructive jaundice. He had a low serum glucagon level using Siemens' <it>Double Antibody Glucagon</it>, a clinical syndrome consistent with glucagon hypersecretion. A periampullary mass biopsy proved to be a neuroendocrine tumor, with positive immunohistochemical reactivity to DakoCytomation's <it>Polyclonal Rabbit Anti-Human Glucagon</it>.</p> <p>Conclusions</p> <p>Differential comparison of the immunohistochemical reactivities of Siemens' <it>Double Antibody Glucagon </it>and DakoCytomation's <it>Polyclonal Rabbit Anti-Human Glucagon </it>discerns enteroglucagon from pancreatic glucagon.</p

    Preclinical characterization of zuranolone (SAGE-217), a selective neuroactive steroid GABAA receptor positive allosteric modulator

    Get PDF
    Zuranolone (SAGE-217) is a novel, synthetic, clinical stage neuroactive steroid GABAA receptor positive allosteric modulator designed with the pharmacokinetic properties to support oral daily dosing. In vitro, zuranolone enhanced GABAA receptor current at nine unique human recombinant receptor subtypes, including representative receptors for both synaptic (γ subunit-containing) and extrasynaptic (δ subunit-containing) configurations. At a representative synaptic subunit configuration, α1β2γ2, zuranolone potentiated GABA currents synergistically with the benzodiazepine diazepam, consistent with the non-competitive activity and distinct binding sites of the two classes of compounds at synaptic receptors. In a brain slice preparation, zuranolone produced a sustained increase in GABA currents consistent with metabotropic trafficking of GABAA receptors to the cell surface. In vivo, zuranolone exhibited potent activity, indicating its ability to modulate GABAA receptors in the central nervous system after oral dosing by protecting against chemo-convulsant seizures in a mouse model and enhancing electroencephalogram β-frequency power in rats. Together, these data establish zuranolone as a potent and efficacious neuroactive steroid GABAA receptor positive allosteric modulator with drug-like properties and CNS exposure in preclinical models. Recent clinical data support the therapeutic promise of neuroactive steroid GABAA receptor positive modulators for treating mood disorders; brexanolone is the first therapeutic approved specifically for the treatment of postpartum depression. Zuranolone is currently under clinical investigation for the treatment of major depressive episodes in major depressive disorder, postpartum depression, and bipolar depression

    Do front-of-pack ‘green labels’ increase sustainable food choice and willingness-to-pay in U.K. consumers?

    Get PDF
    Aim: In a series of pre-registered online studies, we aimed to elucidate the magnitude of the effect of general sustainability labels on U.K. consumers’ food choices. Methods: Four labels were displayed: ‘Sustainably sourced’, ‘Locally sourced’, ‘Environmentally friendly’, and ‘Low greenhouse gas emissions’. To ensure reliable results, contingency valuation elicitation was used alongside a novel analytical approach to provide a triangulation of evidence: Multilevel-modelling compared each label vs. no-label; Poisson-modelling compared label vs. label. Socioeconomic status, environmental awareness, health motivations, and nationalism/patriotism were included in our predictive models. Results: Exp.1 Multilevel-modelling (N = 140) showed labelled products were chosen 344% more than non-labelled and consumers were willing-to-pay ∼£0.11 more, although no difference between label types was found. Poisson-modelling (N = 735) showed consumers chose Sustainably sourced and Locally sourced labels ∼20% more often but were willing-to-pay ∼£0.03 more only for Locally sourced products. Exp.2 was a direct replication. Multilevel-modelling (N = 149) showed virtually identical results (labels chosen 344% more, willingness-to-pay ∼£0.10 more), as did Poisson-modelling (N = 931) with Sustainably sourced and Locally sourced chosen ∼20% more and willingness-to-pay ∼£0.04 more for Locally sourced products. Environmental concern (specifically the ‘propensity to act’) was the only consistent predictor of preference for labelled vs. non-labelled products. Conclusions: Findings suggest front-of-pack ‘green labels’ may yield substantive increases in consumer choice alongside relatively modest increases in willingness-to-pay for environmentally-sustainable foods. Specifically, references to ‘sustainable’ or ‘local’ sourcing may have the largest impact

    Development and validation of self-reported line drawings for assessment of knee malalignment and foot rotation: a cross-sectional comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For large scale epidemiological studies clinical assessments and radiographs can be impractical and expensive to apply to more than just a sample of the population examined. The study objectives were to develop and validate two novel instruments for self-reported knee malalignment and foot rotation suitable for use in questionnaire studies of knee pain and osteoarthritis.</p> <p>Methods</p> <p>Two sets of line drawings were developed using similar methodology. Each instrument consisted of an explanatory question followed by a set of drawings showing straight alignment, then two each at 7.5° angulation and 15° angulation in the varus/valgus (knee) and inward/outward (foot) directions. Forty one participants undertaking a community study completed the instruments on two occasions. Participants were assessed once by a blinded expert clinical observer with demonstrated excellent reproducibility. Validity was assessed by sensitivity, specificity and likelihood ratio (LR) using the observer as the reference standard. Reliability was assessed using weighted kappa (κ). Knee malalignment was measured on 400 knee radiographs. General linear model was used to assess for the presence of a linear increase in knee alignment angle (measured medially) from self-reported severe varus to mild varus, straight, mild valgus and severe valgus deformity.</p> <p>Results</p> <p>Observer reproducibility (κ) was 0.89 and 0.81 for the knee malalignment and foot rotation instruments respectively. Self-reported participant reproducibility was also good for the knee (κ 0.73) and foot (κ 0.87) instruments. Validity was excellent for the knee malalignment instrument, with a sensitivity of 0.74 (95%CI 0.54, 0.93) and specificity of 0.97 (95%CI 0.94, 1.00). Similarly the foot rotation instrument was also found to have high sensitivity (0.92, 95%CI 0.83, 1.01) and specificity (0.96, 95%CI 0.93, 1.00). The knee alignment angle increased progressively from self reported severe varus to mild varus, straight, mild valgus and severe valgus knee malalignment (p<sub>trend </sub><0.001).</p> <p>Conclusions</p> <p>The two novel instruments appear to provide a valid and reliable assessment of self-reported knee malalignment and foot rotation, and may have a practical use in epidemiological studies.</p

    BLM and RMI1 alleviate RPA inhibition of topoIIIα decatenase activity

    Get PDF
    RPA is a single-stranded DNA binding protein that physically associates with the BLM complex. RPA stimulates BLM helicase activity as well as the double Holliday junction dissolution activity of the BLM-topoisomerase IIIα complex. We investigated the effect of RPA on the ssDNA decatenase activity of topoisomerase IIIα. We found that RPA and other ssDNA binding proteins inhibit decatenation by topoisomerase IIIα. Complex formation between BLM, TopoIIIα, and RMI1 ablates inhibition of decatenation by ssDNA binding proteins. Together, these data indicate that inhibition by RPA does not involve species-specific interactions between RPA and BLM-TopoIIIα-RMI1, which contrasts with RPA modulation of double Holliday junction dissolution. We propose that topoisomerase IIIα and RPA compete to bind to single-stranded regions of catenanes. Interactions with BLM and RMI1 enhance toposiomerase IIIα activity, promoting decatenation in the presence of RPA
    • …
    corecore