380 research outputs found

    Preliminary study of effects of winglets on wing flutter

    Get PDF
    Some experimental flutter results are presented over a Mach number range from about 0.70 to 0.95 for a simple, swept, tapered, flat-plate wing model having a planform representative of subsonic transport airplanes and for the same wing model equipped with two different upper surface winglets. Both winglets had the same planform and area (about 2 percent of the basic-wing area); however, one weighed about 0.3 percent of the basic-wing weight, and the other weighed about 1.8 percent of the wing weight. The addition of the lighter winglet reduced the wing-flutter dynamic pressure by about 3 percent; the heavier winglet reduced the wing-flutter dynamic pressure by about 12 percent. The experimental flutter results are compared at a Mach number of 0.80 with analytical flutter results obtained by using doublet-lattice and lifting-surface (kernel-function) unsteady aerodynamic theories

    A preliminary study of the effects of vortex diffusers (winglets) on wing flutter

    Get PDF
    Some experimental flutter results are presented for a simple, flat-plate wing model and for the same wing model equipped with two different upper surface vortex diffusers over the Mach number range from about 0.70 to 0.95. Both vortex diffusers had the same planform, but one weighed about 0.3 percent of the basic wing weight, whereas the other weighed about 1.8 percent of the wing weight. The addition of the lighter vortex diffuser reduced the flutter dynamic pressure by about 3 percent; the heavier vortex diffuser reduced the flutter dynamic pressure by about 12 percent. The experimental flutter results are compared at a Mach number of 0.80 with analytical flutter results obtained by using doublet lattice and lifting surface (Kernel function) unsteady aerodynamic theories

    Automation and robotics considerations for a lunar base

    Get PDF
    An envisioned lunar outpost shares with other NASA missions many of the same criteria that have prompted the development of intelligent automation techniques with NASA. Because of increased radiation hazards, crew surface activities will probably be even more restricted than current extravehicular activity in low Earth orbit. Crew availability for routine and repetitive tasks will be at least as limited as that envisioned for the space station, particularly in the early phases of lunar development. Certain tasks are better suited to the untiring watchfulness of computers, such as the monitoring and diagnosis of multiple complex systems, and the perception and analysis of slowly developing faults in such systems. In addition, mounting costs and constrained budgets require that human resource requirements for ground control be minimized. This paper provides a glimpse of certain lunar base tasks as seen through the lens of automation and robotic (A&R) considerations. This can allow a more efficient focusing of research and development not only in A&R, but also in those technologies that will depend on A&R in the lunar environment

    Improvements to the Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN)

    Get PDF
    Devices for manipulating and precisely placing payloads are critical for efficient space operations including berthing of spacecraft, in-space assembly, construction and repair. Key to the success of many NASA space activities has been the availability of long-reach crane-like devices such as the Shuttle Remote Manipulation System (SRMS) and the Space Station Remote Manipulation System (SSRMS). These devices have been used for many operations including berthing visiting spacecraft to the International Space Station, deployment of spacecraft, space station assembly, astronaut positioning, payload transfer, and spacecraft inspection prior to atmospheric re-entry. Retiring the Space Transportation System has led to the removal of the SRMS from consideration for in-space missions, thus creating a capability gap. Recognizing this gap, work was initiated at NASA on a new architecture for long-reach space manipulators. Most current devices are constructed by joining revolute joints with carbon composite tubes, with the joints accounting for the majority of the device mass. For example in the case of the SRMS, the entire device mass is 410 kg (904 lbm); the joint structure, motors, gear train, cabling, etc., accounts for the majority of the system mass because the carbon composite tubes mass is 46 kg (101 lbm). An alternate space manipulator concept, the Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN) was created to address deficiencies in the current state-of-the-art in long-reach manipulators. The antagonistic tendon actuated joint architecture allows the motors actuating the joint to be removed from the joint axis, which simplifies the joint design while simultaneously providing mechanical advantage for the motors. The improved mechanical advantage, in turn, reduces the size and power requirements for the motor and gear train. This paper will describe recent architectural improvements to the TALISMAN design that: 1) improve the operational robustness of the system by enabling maneuvers not originally possible by varying the TALISMAN geometry; 2) enable efficient active antagonistic control of a joint while sharing cable between antagonistic tension networks; and 3) uses a unique arrangement of differential capstans to reduce motor torque requirements by an order of magnitude. The paper will also summarize recent efforts to enable autonomous deployment of a TALISMAN including the deployment concept of operations and associated hardware system design. The deployment forces are provided by the same motor systems that are used for articulation, thus reducing the mass associated with the deployment system. The deployment approach is being tested on a TALISMAN prototype which is designed to provide the same operational performance as a shuttle-class manipulator. The prototype has been fabricated and is operational in a new facility at NASA Langley Research Center that has a large area (15.2 m by 21.3 m [50 ft by 70 ft]) air-bearing floor

    Hinge for Use in a Tension Stiffened and Tendon Actuated Manipulator

    Get PDF
    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge

    ELT Observations of Supernovae at the Edge of the Universe

    Full text link
    We discuss the possibility of using Supernovae as tracers of the star formation history of the Universe for the range of stellar masses 330\sim 3-30 M_\odot and possibly beyond. We simulate the observations of 350 SNe, up to z15z\sim 15, made with OWL (100m) telescope.Comment: 9 pages, 6 figures. To appear in "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", proceedings of the conference held in Berlin, 18-21 May 200

    Recent Developments in the Design, Capabilities and Autonomous Operations of a Lightweight Surface Manipulation System and Test-bed

    Get PDF
    The first generation of a versatile high performance device for performing payload handling and assembly operations on planetary surfaces, the Lightweight Surface Manipulation System (LSMS), has been designed and built. Over the course of its development, conventional crane type payload handling configurations and operations have been successfully demonstrated and the range of motion, types of operations and the versatility greatly expanded. This enhanced set of 1st generation LSMS hardware is now serving as a laboratory test-bed allowing the continuing development of end effectors, operational techniques and remotely controlled and automated operations. This paper describes the most recent LSMS and test-bed development activities, that have focused on two major efforts. The first effort was to complete a preliminary design of the 2nd generation LSMS that has the capability for limited mobility and can reposition itself between lander decks, mobility chassis, and fixed base locations. A major portion of this effort involved conducting a study to establish the feasibility of, and define, the specifications for a lightweight cable-drive waist joint. The second effort was to continue expanding the versatility and autonomy of large planetary surface manipulators using the 1st generation LSMS as a test-bed. This has been accomplished by increasing manipulator capabilities and efficiencies through both design changes and tool and end effector development. A software development effort has expanded the operational capabilities of the LSMS test-bed to include; autonomous operations based on stored paths, use of a vision system for target acquisition and tracking, and remote command and control over a communications bridge

    Superconductors with Magnetic Impurities: Instantons and Sub-gap States

    Full text link
    When subject to a weak magnetic impurity potential, the order parameter and quasi-particle energy gap of a bulk singlet superconductor are suppressed. According to the conventional mean-field theory of Abrikosov and Gor'kov, the integrity of the energy gap is maintained up to a critical concentration of magnetic impurities. In this paper, a field theoretic approach is developed to critically analyze the validity of the mean field theory. Using the supersymmetry technique we find a spatially homogeneous saddle-point that reproduces the Abrikosov-Gor'kov theory, and identify instanton contributions to the density of states that render the quasi-particle energy gap soft at any non-zero magnetic impurity concentration. The sub-gap states are associated with supersymmetry broken field configurations of the action. An analysis of fluctuations around these configurations shows how the underlying supersymmetry of the action is restored by zero modes. An estimate of the density of states is given for all dimensionalities. To illustrate the universality of the present scheme we apply the same method to study `gap fluctuations' in a normal quantum dot coupled to a superconducting terminal. Using the same instanton approach, we recover the universal result recently proposed by Vavilov et al. Finally, we emphasize the universality of the present scheme for the description of gap fluctuations in d-dimensional superconducting/normal structures.Comment: 18 pages, 9 eps figure

    Gamma-ray emission expected from Kepler's SNR

    Full text link
    Nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants (SNRs) is used to investigate the properties of Kepler's SNR and, in particular, to predict the gamma-ray spectrum expected from this SNR. Observations of the nonthermal radio and X-ray emission spectra as well as theoretical constraints for the total supernova (SN) explosion energy E_sn are used to constrain the astronomical and particle acceleration parameters of the system. Under the assumption that Kepler's SN is a type Ia SN we determine for any given explosion energy E_sn and source distance d the mass density of the ambient interstellar medium (ISM) from a fit to the observed SNR size and expansion speed. This makes it possible to make predictions for the expected gamma-ray flux. Exploring the expected distance range we find that for a typical explosion energy E_sn=10^51 erg the expected energy flux of TeV gamma-rays varies from 2x10^{-11} to 10^{-13} erg/(cm^2 s) when the distance changes from d=3.4 kpc to 7 kpc. In all cases the gamma-ray emission is dominated by \pi^0-decay gamma-rays due to nuclear CRs. Therefore Kepler's SNR represents a very promising target for instruments like H.E.S.S., CANGAROO and GLAST. A non-detection of gamma-rays would mean that the actual source distance is larger than 7 kpc.Comment: 6 pages, 4 figures. Accepted for publication in Astronomy and Astrophysics, minor typos correcte
    corecore