15 research outputs found

    THE STRUCTURE AND FUNCTION OF PERIPHERAL BLOOD LEUCOCYTES AND GUT-ASSOCIATED LYMPHOID TISSUE IN THE CICHLID, OREOCHROMIS MOSSAMBICUS

    Get PDF
    The peripheral blood of O.mossambicus was examined using light and electron microscopy and was found to contain four forms of leucocytes: lymphocytes, thrombocytes, monocytes and three types of granulocytes. The monocyte and two types of granulocyte were found to be phagocytic and ingest colloidal carbon and bacteria. The alimentary tract was found to contain a number of leucocytes, some showing a morphological similarity to those in the peripheral blood, while others were unique to the gut tissue. These intestinal leucocytes were found mainly as a diffuse cell population in the epithelium and lamina propria, and only occasionally as discrete lymphoid accumulations within the gut tissue. Ontogenic studies showed that a limited number of leucocytes were found in the gut tissue after hatching, however, there was a gradual increase in these numbers once exogenous feeding began. The intestinal enterocytes of both the anterior and posterior intestine were found to take up intubated macromolecules. An electron microscopical investigation revealed that these macromolecules were absorbed by pinocytosis and were found within large intraepithelial macrophages. These macromolecules were also absorbed and transported into the systemic circulation. In juvenile fish macromolecules were detected in the plasma following both oral and anal intubation, however, in adult fish they were detected in the plasma only after anal intubation, and in smaller quantities. Macromolecular absorption in O.mossambicus was compared to that in two other fish species, Cyprinus carpio and Sa1mo gairdneri, and it was found that higher levels of absorbed macromolecules were found in the plasma of O.mossambicus. Bovine serum albumin absorption by the gut of the three species revealed that both the 'intact' macromolecule and smaller antigenic fragments, probably resulting from enzymatic modification, were ansorbed and transported into the plasma.Wellcome Laboratories, Beckenha

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Identification and Characterization of Small Molecules That Inhibit Intracellular Toxin Transport▿ †

    Get PDF
    Shiga toxin (Stx), cholera toxin (Ctx), and the plant toxin ricin are among several toxins that reach their intracellular destinations via a complex route. Following endocytosis, these toxins travel in a retrograde direction through the endosomal system to the trans-Golgi network, Golgi apparatus, and endoplasmic reticulum (ER). There the toxins are transported across the ER membrane to the cytosol, where they carry out their toxic effects. Transport via the ER from the cell surface to the cytosol is apparently unique to pathogenic toxins, raising the possibility that various stages in the transport pathway can be therapeutically targeted. We have applied a luciferase-based high-throughput screen to a chemical library of small-molecule compounds in order to identify inhibitors of Stx. We report two novel compounds that protect against Stx and ricin inhibition of protein synthesis, and we demonstrate that these compounds reversibly inhibit bacterial transport at various stages in the endocytic pathway. One compound (compound 75) inhibited transport at an early stage of Stx and Ctx transport and also provided protection against diphtheria toxin, which enters the cytosol from early endosomes. In contrast, compound 134 inhibited transport from recycling endosomes through the Golgi apparatus and protected only against toxins that access the ER. Small-molecule compounds such as these will provide insight into the mechanism of toxin transport and lead to the identification of compounds with therapeutic potential against toxins routed through the ER

    RUBCN/rubicon and EGFR regulate lysosomal degradative processes in the retinal pigment epithelium (RPE) of the eye

    No full text
    <p>Macroautophagy/autophagy is an intracellular stress survival and recycling system whereas phagocytosis internalizes material from the extracellular milieu; yet, both pathways utilize lysosomes for cargo degradation. Whereas autophagy occurs in all cells, phagocytosis is performed by cell types such as macrophages and the retinal pigment epithelial (RPE) cells of the eye where it is supported by the noncanonical autophagy process termed LC3-associated phagocytosis (LAP). Autophagy and LAP are distinct pathways that use many of the same mediators and must compete for cellular resources, suggesting that cells may regulate both processes under homeostatic and stress conditions. Our data reveal that RPE cells promote LAP through the expression of RUBCN/Rubicon (RUN domain and cysteine-rich domain containing Beclin 1-interacting protein) and suppress autophagy through the activation of EGFR (epidermal growth factor receptor). In the morning when photoreceptor outer segments (POS) phagocytosis and LAP are highest, RUBCN expression is increased. At the same time, outer segment phagocytosis activates the EGFR resulting in MTOR (mechanistic target of rapamycin [serine/threonine kinase]) stimulation, the accumulation of SQSTM1/p62, and the phosphorylation of BECN1 (Beclin 1, autophagy related) on an inhibitory residue thereby suppressing autophagy. Silencing <i>Rubcn</i>, preventing EGFR activity or directly inducing autophagy in RPE cells by starvation inhibits phagocytic degradation of POS. Thus, RPE cells regulate lysosomal pathways during the critical period of POS phagocytosis to support retinal homeostasis.</p

    Parathyroid Hormone Inhibits c-Jun N-Terminal Kinase Activity in Rat Osteoblastic Cells by a Protein Kinase A-Dependent Pathway

    No full text
    Treatment of osteoblastic cells with PTH initiates dual signaling cascades resulting in activation of both PKA and PKC. It has been shown that PTH either inhibits or stimulates ERKs depending on dose of the hormone; nevertheless, the ability of PTH to regulate other members of the MAPK family is unknown. Another member of this family, c-Jun-NH2-terminal kinase (JNK), is preferentially activated by cytokines and cellular stresses and plays a key role in regulating the activity of various transcription factors. We demonstrate that treatment of UMR 106-01 cells and rat calvarial osteoblasts with PTH (10-8 M), N-terminal peptides of PTH that selectively activate PKA, or 8-bromo-cAMP (activates PKA) results in the inhibition of JNK activity from high basal levels. Examination of the upstream members of the JNK cascade revealed that both stress-activated protein kinase/extracellular signal-related kinase kinase 1/MAPK kinase 4 and MAPK/extracellular signal-related kinase kinase kinase 1 activities were also inhibited after treatment with PTH (10-8 M). We conclude that treatment of osteoblastic cells with PTH is sufficient to inhibit high basal JNK activity by activation of the PKA signaling cascade

    Selectin-like kinetics and biomechanics promote rapid platelet adhesion in flow: the GPIb(alpha)-vWF tether bond.

    Get PDF
    The ability of platelets to tether to and translocate on injured vascular endothelium relies on the interaction between the platelet glycoprotein receptor Ib alpha (GPIb(alpha)) and the A1 domain of von Willebrand factor (vWF-A1). To date, limited information exists on the kinetics that govern platelet interactions with vWF in hemodynamic flow. We now report that the GPIb(alpha)-vWF-A1 tether bond displays similar kinetic attributes as the selectins including: 1) the requirement for a critical level of hydrodynamic flow to initiate adhesion, 2) short-lived tethering events at sites of vascular injury in vivo, and 3) a fast intrinsic dissociation rate constant, k(0)(off) (3.45 +/- 0.37 s(-1)). Values for k(off), as determined by pause time analysis of transient capture/release events, were also found to vary exponentially (4.2 +/- 0.8 s(-1) to 7.3 +/- 0.4 s(-1)) as a function of the force applied to the bond (from 36 to 217 pN). The biological importance of rapid bond dissociation in platelet adhesion is demonstrated by kinetic characterization of the A1 domain mutation, I546V that is associated with type 2B von Willebrand disease (vWD), a bleeding disorder that is due to the spontaneous binding of plasma vWF to circulating platelets. This mutation resulted in a loss of the shear threshold phenomenon, a approximately sixfold reduction in k(off), but no significant alteration in the ability of the tether bond to resist shear-induced forces. Thus, flow dependent adhesion and rapid and force-dependent kinetic properties are the predominant features of the GPIb(alpha)-vWF-A1 tether bond that in part may explain the preferential binding of platelets to vWF at sites of vascular injury, the lack of spontaneous platelet aggregation in circulating blood, and a mechanism to limit thrombus formation

    Autophagy supports color vision

    No full text
    Cones comprise only a small portion of the photoreceptors in mammalian retinas. However, cones are vital for color vision and visual perception, and their loss severely diminishes the quality of life for patients with retinal degenerative diseases. Cones function in bright light and have higher demand for energy than rods; yet, the mechanisms that support the energy requirements of cones are poorly understood. One such pathway that potentially could sustain cones under basal and stress conditions is macroautophagy. We addressed the role of macroautophagy in cones by examining how the genetic block of this pathway affects the structural integrity, survival, and function of these neurons. We found that macroautophagy was not detectable in cones under normal conditions but was readily observed following 24 h of fasting. Consistent with this, starvation induced phosphorylation of AMPK specifically in cones indicating cellular starvation. Inhibiting macroautophagy in cones by deleting the essential macroautophagy gene Atg5 led to reduced cone function following starvation suggesting that cones are sensitive to systemic changes in nutrients and activate macroautophagy to maintain their function. ATG5-deficiency rendered cones susceptible to light-induced damage and caused accumulation of damaged mitochondria in the inner segments, shortening of the outer segments, and degeneration of all cone types, revealing the importance of mitophagy in supporting cone metabolic needs. Our results demonstrate that macroautophagy supports the function and long-term survival of cones providing for their unique metabolic requirements and resistance to stress. Targeting macroautophagy has the potential to preserve cone-mediated vision during retinal degenerative diseases
    corecore