147 research outputs found

    Weltweiter SARS-Alarm : eine neue Seuche auf dem Vormarsch?

    Get PDF
    Mitte März 2003 löste die WHO einen weltweiten Alarm aus, nachdem sich eine neuartige, schwere und unter bestimmten Umständen hochansteckende Atemwegserkrankung scheinbar unaufhaltsam über weite Teile der Welt auszubreiten schien. Am 15. März desselben Jahres landeten die ersten Patienten mit Verdacht auf Schweres Akutes Respiratorisches Syndrom (SARS) in Frankfurt und wurden auf die Isolierstation des Universitätsklinikums aufgenommen. Auslöser war ein zuvor nicht bekanntes Coronavirus, das heute als SARS-CoV bezeichnet wird. Derzeit laufen Untersuchungen zur Biologie und Epidemiologie des neuen Erregers, zu antiviralen Hemmstoffen sowie zu Desinfektions- und Inaktivierungsmöglichkeiten und neuen Therapieoptionen. Daneben wird analysiert, wie sich das öffentliche Gesundheitswesen auf eine mögliche Wiederkehr vorbereiten muss. SARS ist ein Beispiel dafür, wie schnell sich eine Infektionskrankheit in der modernen Welt international ausbreiten kann und wie wichtig in einem solchen Falle eine gut koordinierte internationale Kooperation ist. Frankfurter Forscher berichten

    Comment on 'Nonreciprocal light propagation in a silicon photonic circuit'

    Get PDF
    We show that the structure demonstrated by Feng et al. (Reports, 5 August 2011, p. 729) cannot enable optical isolation because it possesses a symmetric scattering matrix. Moreover, one cannot construct an optical isolator by incorporating this structure into any system as long as the system is linear and time-independent and is described by materials with a scalar dielectric function

    The relentless variability of Mrk 421 from the TeV to the radio

    Full text link
    The origin of the gamma-ray emission of the blazar Mrk 421 is still a matter of debate. We used 5.5 years of unbiased observing campaign data, obtained using the FACT telescope and the Fermi LAT detector at TeV and GeV energies, the longest and densest so far, together with contemporaneous multi-wavelength observations, to characterise the variability of Mrk 421 and to constrain the underlying physical mechanisms. We studied and correlated light curves obtained by ten different instruments and found two significant results. The TeV and X-ray light curves are very well correlated with a lag of <0.6 days. The GeV and radio (15 Ghz band) light curves are widely and strongly correlated. Variations of the GeV light curve lead those in the radio. Lepto-hadronic and purely hadronic models in the frame of shock acceleration predict proton acceleration or cooling timescales that are ruled out by the short variability timescales and delays observed in Mrk 421. Instead the observations match the predictions of leptonic models.Comment: 10 pages, 8 figures, 1 tabl

    Identification of a novel coronavirus in patients with severe acute respiratory syndrome

    Get PDF
    BACKGROUND: The severe acute respiratory syndrome (SARS) has recently been identified as a new clinical entity. SARS is thought to be caused by an unknown infectious agent. METHODS: Clinical specimens from patients with SARS were searched for unknown viruses with the use of cell cultures and molecular techniques. RESULTS: A novel coronavirus was identified in patients with SARS. The virus was isolated in cell culture, and a sequence 300 nucleotides in length was obtained by a polymerase-chain-reaction (PCR)-based random-amplification procedure. Genetic characterization indicated that the virus is only distantly related to known coronaviruses (identical in 50 to 60 percent of the nucleotide sequence). On the basis of the obtained sequence, conventional and real-time PCR assays for specific and sensitive detection of the novel virus were established. Virus was detected in a variety of clinical specimens from patients with SARS but not in controls. High concentrations of viral RNA of up to 100 million molecules per milliliter were found in sputum. Viral RNA was also detected at extremely low concentrations in plasma during the acute phase and in feces during the late convalescent phase. Infected patients showed seroconversion on the Vero cells in which the virus was isolated. CONCLUSIONS: The novel coronavirus might have a role

    Human Monoclonal Antibody Combination against SARS Coronavirus: Synergy and Coverage of Escape Mutants

    Get PDF
    BACKGROUND: Experimental animal data show that protection against severe acute respiratory syndrome coronavirus (SARS-CoV) infection with human monoclonal antibodies (mAbs) is feasible. For an effective immune prophylaxis in humans, broad coverage of different strains of SARS-CoV and control of potential neutralization escape variants will be required. Combinations of virus-neutralizing, noncompeting mAbs may have these properties. METHODS AND FINDINGS: Human mAb CR3014 has been shown to completely prevent lung pathology and abolish pharyngeal shedding of SARS-CoV in infected ferrets. We generated in vitro SARS-CoV variants escaping neutralization by CR3014, which all had a single P462L mutation in the glycoprotein spike (S) of the escape virus. In vitro experiments confirmed that binding of CR3014 to a recombinant S fragment (amino acid residues 318–510) harboring this mutation was abolished. We therefore screened an antibody-phage library derived from blood of a convalescent SARS patient for antibodies complementary to CR3014. A novel mAb, CR3022, was identified that neutralized CR3014 escape viruses, did not compete with CR3014 for binding to recombinant S1 fragments, and bound to S1 fragments derived from the civet cat SARS-CoV-like strain SZ3. No escape variants could be generated with CR3022. The mixture of both mAbs showed neutralization of SARS-CoV in a synergistic fashion by recognizing different epitopes on the receptor-binding domain. Dose reduction indices of 4.5 and 20.5 were observed for CR3014 and CR3022, respectively, at 100% neutralization. Because enhancement of SARS-CoV infection by subneutralizing antibody concentrations is of concern, we show here that anti-SARS-CoV antibodies do not convert the abortive infection of primary human macrophages by SARS-CoV into a productive one. CONCLUSIONS: The combination of two noncompeting human mAbs CR3014 and CR3022 potentially controls immune escape and extends the breadth of protection. At the same time, synergy between CR3014 and CR3022 may allow for a lower total antibody dose to be administered for passive immune prophylaxis of SARS-CoV infection
    corecore