227 research outputs found

    Bacteriophage T4 and our present concept of the gene

    Get PDF
    A. H. DOERMANN, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON

    THE INTRACELLULAR GROWTH OF BACTERIOPHAGES : II. THE GROWTH OF T3 STUDIED BY SONIC DISINTEGRATION AND BY T6-CYANIDE LYSIS OF INFECTED CELLS

    Get PDF
    The growth of the virus T3 has been followed by breaking up the complexes it forms with host cells at various stages in their development and then assaying the debris for active virus particles. Two independent methods for breaking up cells were used: sonic vibration and lysis by the T6-cyanide method previously used for the study of the growth of T4. During the first half of the latent period both treatments, as well as cyanide alone, destroyed the capacity of the complexes for producing daughter virus particles. Furthermore, the infecting particles could not be recovered from them during the first half of the latent period. After the complexes had had 12 minutes of incubation at 30°C. both methods freed daughter virus particles from them in numbers which increased steadily with time until, near the end of the rise period, the normal burst size was reached. In general the agreement between the two yields is so good that one may conclude that both methods liberate quantitatively the mature daughter T3 particles which exist in the complexes before normal lysis occurs

    Pancreatic ductal adenocarcinoma cell secreted extracellular vesicles containing ceramide-1-phosphate promote pancreatic cancer stem cell motility

    Get PDF
    The high mortality rate associated with pancreatic ductal adenocarcinoma (PDAC) is in part due to lack of effective therapy for this highly chemoresistant tumor. Cancer stem cells, a subset of cancer cells responsible for tumor initiation and metastasis, are not targeted by conventional cytotoxic agents, which renders the identification of factors that facilitate cancer stem cell activation useful in defining targetable mechanisms. We determined that bioactive sphingolipid induced migration of pancreatic cancer stem cells (PCSC) and signaling was specific to ceramide-1-phosphate (C1P). Furthermore, PDAC cells were identified as a rich source of C1P. Importantly, PDAC cells express the C1P converting enzyme ceramide kinase (CerK), secrete C1P-containing extracellular vesicles that mediate PCSC migration, and when co-injected with PCSC reduce animal survival in a PDAC peritoneal dissemination model. Our findings suggest that PDAC secrete C1P-containing extracellular vesicles as a means of recruiting PCSC to sustain tumor growth therefore making C1P release a mechanism that could facilitate tumor progression

    A role for accessory genes rI.-1 and rI.1 in the regulation of lysis inhibition by bacteriophage T4

    Get PDF
    Lysis inhibition (LIN) is a known feature of the T-even family of bacteriophages. Despite its historical role in the development of modern molecular genetics, many aspects of this phenomenon remain mostly unexplained. The key element of LIN is an interaction between two phage-encoded proteins, the T holin and the RI antiholin. This interaction is stabilized by RIII. In this report, we demonstrate the results of genetic experiments which suggest a synergistic action of two accessory proteins of bacteriophage T4, RI.-1, and RI.1 with RIII in the regulation of LIN

    Detection of Head-to-Tail DNA Sequences of Human Bocavirus in Clinical Samples

    Get PDF
    Parvoviruses are single stranded DNA viruses that replicate in a so called “rolling-hairpin” mechanism, a variant of the rolling circle replication known for bacteriophages like ϕX174. The replication intermediates of parvoviruses thus are concatemers of head-to-head or tail-to-tail structure. Surprisingly, in case of the novel human bocavirus, neither head-to-head nor tail-to-tail DNA sequences were detected in clinical isolates; in contrast head-to-tail DNA sequences were identified by PCR and sequencing. Thereby, the head-to-tail sequences were linked by a novel sequence of 54 bp of which 20 bp also occur as conserved structures of the palindromic ends of parvovirus MVC which in turn is a close relative to human bocavirus

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
    corecore