22 research outputs found
DMSO increases efficiency of genome editing at two non-coding loci
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) has become the tool of choice for genome editing. Despite the fact that it has evolved as a highly efficient means to edit/replace coding sequence, CRISPR/Cas9 efficiency for “clean” editing of non-coding DNA remains low. We set out to introduce a single base-pair substitution in two intronic SNPs at the FTO locus without altering nearby non-coding sequence. Substitution efficiency increased up to 10-fold by treatment of human embryonic stem cells (ESC) with non-toxic levels of DMSO (1%) before CRISPR/Cas9 delivery. Treatment with DMSO did not result in CRISPR/Cas9 off-target effects or compromise the chromosomal stability of the ESC. Twenty-four hour treatment of human ESC with DMSO before CRISPR/Cas9 delivery may prove a simple means to increase editing efficiency of non-coding DNA without incorporation of undesirable mutations
i-SNAREs: inhibitory SNAREs that fine-tune the specificity of membrane fusion
A new functional class of SNAREs, designated inhibitory SNAREs (i-SNAREs), is described here. An i-SNARE inhibits fusion by substituting for or binding to a subunit of a fusogenic SNAREpin to form a nonfusogenic complex. Golgi-localized SNAREs were tested for i-SNARE activity by adding them as a fifth SNARE together with four other SNAREs that mediate Golgi fusion reactions. A striking pattern emerges in which certain subunits of the cis-Golgi SNAREpin function as i-SNAREs that inhibit fusion mediated by the trans-Golgi SNAREpin, and vice versa. Although the opposing distributions of the cis- and trans-Golgi SNAREs themselves could provide for a countercurrent fusion pattern in the Golgi stack, the gradients involved would be strongly sharpened by the complementary countercurrent distributions of the i-SNAREs
Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity.
Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 Ă— 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity
Correctly targeted ESC clones are pluripotent.
<p>Immunofluorescence of correctly targeted ESC clone rs1421085 (C/C) showing pluripotency molecular markers homeobox transcription factor NANOG, octamer-binding homeodomain transcription factor 4 (OCT4), glycoprotein TRA-1-80, Stage-Specific Embryonic Antigen-4 (SSEA-4), and transcription factor SRY (sex determining region Y)-box 2 (SOX2). Pluripotency markers are shown in green, nuclei are counterstained with DAPI.</p
Quality control measures of correctly targeted clones.
<p>(A, B) Results from Sanger sequencing. The SNPs rs9940128 (near rs1421085) and rs4783819 (near rs8050136) were amplified and sequenced in the same read to control for possible long deletions in the correctly targeted ESC clones. (C) Two representative karyotypic images. All correctly targeted clones tested displayed a normal karyotype.</p
Schematic representation of the <i>FTO</i> genomic locus (chr16:53,703,963–54,121,941).
<p>(A) SNPs rs1421085 (C/T) and rs8050136 (A/C) are located in the first intron of <i>FTO</i>. (B, C) CRISPR/Cas9 technology was employed to convert ESC line H9 (heterozygous for both SNPs) to homozygosity for both alleles at rs1421085 (C/C or T/T) or rs8050136 (C/C or A/A). Positions of gRNA, PAM sequence and ssODN are indicated by thick lines in blue, purple and black, respectively. SNPs are given in green. Predicted Cas9 cut sites are indicated by red arrow heads.</p
Percentage of HDR, DSB and no cleavage in DMSO-treated and non-treated clones.
<p>Percentage of HDR, DSB and no cleavage in DMSO-treated and non-treated clones.</p
Inverse mismatch and lesion growth in small subcortical ischaemic stroke
OBJECTIVE: Infarction typically develops within the borders of an initial hypoperfused tissue. We prospectively investigated whether in small subcortical stroke patients infarct growth can occur beyond the margins of the affected vascular territories.
METHODS: In 19 consecutive patients, stroke MRI was performed within 14 h after ictus, and at days 2 and 6 (± 1). Size of diffusion and perfusion disturbances were determined. Infarct volume measured on T2-weighted images on day 6 was considered as imaging endpoint.
RESULTS: At the initial examination, the mean diffusion lesion [apparent diffusion coefficient (ADC) lesion size, 1.82 ± 1.2 ml] was larger (p = 0.0002) than the perfusion lesion [mean transit time (MTT) lesion size, 0.72 ± 0.69 ml]. Such an "inverse mismatch" (ADC lesion > MTT lesion) was present in 14/19 patients at baseline and in all patients on day 2. Final lesion volume at day 6 was 3.2 ± 1.6 ml which was larger than the initial perfusion deficit (p = 0.02).
CONCLUSION: In small subcortical ischaemic stroke "inverse mismatch" is frequent and infarction develops beyond the initial perfusion disturbance. This indicates that cytotoxic processes probably triggered by the infarct core are a dominant mechanism for lesion growth. Areas with normal perfusion but which are threatened by cytotoxic damage developing over several days seem prime targets for neuroprotective therapy
PC1/3 Deficiency Impacts Pro-opiomelanocortin Processing in Human Embryonic Stem Cell-Derived Hypothalamic Neurons
We recently developed a technique for generating hypothalamic neurons from human pluripotent stem cells. Here, as proof of principle, we examine the use of these cells in modeling of a monogenic form of severe obesity: PCSK1 deficiency. The cognate enzyme, PC1/3, processes many prohormones in neuroendocrine and other tissues. We generated PCSK1 (PC1/3)-deficient human embryonic stem cell (hESC) lines using both short hairpin RNA and CRISPR-Cas9, and investigated pro-opiomelanocortin (POMC) processing using hESC-differentiated hypothalamic neurons. The increased levels of unprocessed POMC and the decreased ratios (relative to POMC) of processed POMC-derived peptides in both PCSK1 knockdown and knockout hESC-derived neurons phenocopied POMC processing reported in PC1/3-null mice and PC1/3-deficient patients. PC1/3 deficiency was associated with increased expression of melanocortin receptors and PRCP (prolylcarboxypeptidase, a catabolic enzyme for α-melanocyte stimulating hormone (αMSH)), and reduced adrenocorticotropic hormone secretion. We conclude that the obesity accompanying PCSK1 deficiency may not be primarily due to αMSH deficiency