1,432 research outputs found

    Flash tube chambers for electron and photon detection

    Get PDF
    The construction and operation of a simple, inexpensive, electron-photon detector, of the sampled shower type, is described the sampling planes consisting of layers of high pressure, methane doped, neon flash tubes, with CAMAC compatible digitised outputs. The detector was tested in a positron beam at energies from 0.5 to 4,0 GeV, No adverse effects due to the high background radiation were experienced, and an energy resolution of 43% and spatial and angular resolutions of 5 mm and 4Âș (FWHM) were obtained. The maximum event rate at which the detector could operate was limited to ~1 sec(^-1), by the presence of internal fields which resulted in spuriousness or inefficiency. The use of modified H„T, pulsing systems has also been investigated as a means of reducing the internal field, A modified detector was constructed, utilising large diameter, low pressure flash tubes, in an attempt to improve the maximum event rate, yet maintain the same useful resolution. An energy resolution of 33% and spatial and angular resolutions of 11 mm and 2Âș (FWHM) were obtained, which compares favourably with more complex and expensive detectors. Unexpectedly, at event rates in excess of a few per second, the tubes behaved either spuriously or inefficiently, due to large internal fields. Investigations into the mechanisms of formation and decay of the internal fields have been made by observation of the digitisation output pulse. This novel approach may, with refinement, be of use in future studies of gas discharges since it is particularly sensitive to the gas breakdown mechanism. The significance of the outer surface resistance of the flash tube has also beer demonstrated to be of importance to the performance of the tube. A mechanism, which results in the flash tube igniting spuriously, is suggested and a threshold value of the internal field, at which spuriousness occurs, has been determined

    Zfh1, a somatic motor neuron transcription factor, regulates axon exit from the CNS

    Get PDF
    AbstractMotor neurons are defined by their axon projections, which exit the CNS to innervate somatic or visceral musculature, yet remarkably little is known about how motor axons are programmed to exit the CNS. Here, we describe the role of the Drosophila Zfh1 transcription factor in promoting axon exit from the CNS. Zfh1 is detected in all embryonic somatic motor neurons, glia associated with the CNS surface and motor axons, and one identified interneuron. In zfh1 mutants, ventral projecting motor axons often stall at the edge of the CNS, failing to enter the muscle field, despite having normal motor neuron identity. Conversely, ectopic Zfh1 induces a subset of interneurons—all normally expressing two or more “ventral motor neuron transcription factors” (e.g. Islet, Hb9, Nkx6, Lim3)—to project laterally and exit the CNS. We conclude that Zfh1 is required for ventral motor axon exit from the CNS

    Minactivin expression in human monocyte and macrophage populations

    Get PDF
    Adherent monolayer cultures of human blood monocytes, peritoneal macrophages, bone marrow macrophages, and colonic mucosa macrophages were examined for their ability to produce and secrete minactivin, a specific inactivator of urokinase-type plasminogen activator. All except colonic mucosa macrophages produced and secreted appreciable amounts of minactivin, but only blood monocytes were stimulated by muramyl dipeptide (adjuvant peptide) to increase production. The minactivin from each of these populations could be shown to preferentially inhibit urokinase-type plasminogen activator and not trypsin, plasmin, or 'tissue'-type plasminogen activator (HPA66). A plasminogen-activating enzyme present in monocyte cultures appeared unaffected by the presence of minactivin and could be shown to be regulated independently by dexamethasone

    Comment on "Evidence for Neutrinoless Double Beta Decay"

    Get PDF
    We comment on the recent claim for the experimental observation of neutrinoless double-beta decay. We discuss several limitations in the analysis provided in that paper and conclude that there is no basis for the presented claim.Comment: A comment written to Modern Physics Letters A. 4 pages, no figures. Updated version, accepted for publicatio

    Project 8 Phase III Design Concept

    Get PDF
    We present a working concept for Phase III of the Project 8 experiment, aiming to achieve a neutrino mass sensitivity of 2 eV2~\mathrm{eV} (90 %90~\% C.L.) using a large volume of molecular tritium and a phased antenna array. The detection system is discussed in detail.Comment: 3 pages, 3 figures, Proceedings of Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U

    Results from the Project 8 phase-1 cyclotron radiation emission spectroscopy detector

    Get PDF
    The Project 8 collaboration seeks to measure the absolute neutrino mass scale by means of precision spectroscopy of the beta decay of tritium. Our technique, cyclotron radiation emission spectroscopy, measures the frequency of the radiation emitted by electrons produced by decays in an ambient magnetic field. Because the cyclotron frequency is inversely proportional to the electron's Lorentz factor, this is also a measurement of the electron's energy. In order to demonstrate the viability of this technique, we have assembled and successfully operated a prototype system, which uses a rectangular waveguide to collect the cyclotron radiation from internal conversion electrons emitted from a gaseous 83m^{83m}Kr source. Here we present the main design aspects of the first phase prototype, which was operated during parts of 2014 and 2015. We will also discuss the procedures used to analyze these data, along with the features which have been observed and the performance achieved to date.Comment: 3 pages; 2 figures; Proceedings of Neutrino 2016, XXVII International Conference on Neutrino Physics and Astrophysics, 4-9 July 2016, London, U
    • 

    corecore