1,413 research outputs found

    Novel thermophilic cellulolytic isolates belonging to the phylum Chloroflexi

    Full text link
    Current biofuel technologies utilize valuable foodstuffs, such as corn kernels and cane sugar, as sources of easily metabolized sugars. Microbes are used to ferment these sugars into bioethanol, a first-generation biofuel. However, in order to avoid diverting foodstuffs from the food supply, the development of second-generation biofuels technology is necessary. Second-generation biofuels are produced by converting structurally complex lignocellulosic biomass, such as agricultural and municipal wastes, to fermentable sugars or directly to biofuels. The major technological hurdle limiting the mass production of second-generation biofuels is the difficulty in efficiently converting structurally complex lignocellulosic materials to fermentable sugars or directly to biofuels. The discovery of novel thermophilic microorganisms and enzymes that have high activities or broad substrate ranges on plant polymers addresses this challenge

    A Spatial and temporal analysis of microbial communities in Great Boiling Spring, Nevada, U.S.A.

    Full text link
    Great Boiling Spring (GBS) is a large, circumneutral, long residence time geothermal spring in the US Great Basin. Twelve samples were taken from four different sediment sites and the planktonic community in the bulk water of GBS on up to four different dates. Microbial community composition and diversity was assessed by using a barcoded, improved universal primer set targeting the V8 portion of the 16S rRNA gene and PCR. Over 200,000 products were sequenced using the Roche 454 GS FLX Titanium System. Sediment and planktonic microbial communities were distinct with very little overlap, regardless of the sampling location or temperature. Planktonic communities were extremely uneven and were dominated by a single phylotype related to Thermocrinis in the Aquificales. Benthic microbial communities grouped according to temperature and sampling location. Two locations, Site A (80-87°C) and Site B (79°C), were predominantly composed of the crenarchaeal class Thermoprotei, the novel archaeal lineage pSL4, and the novel bacterial lineage GAL35. Populations of the ammonia oxidizing archaeon “Candidatus Nitrosocaldus yellowstonii” comprised 5-15% of all samples when Site A was cooler than normal (80°C) and at cooler sites throughout the spring (76-62°C). At cooler temperature sites (76-62°C), the phylum-level diversity and evenness were significantly higher, and bacteria made up a significantly higher percentage of the population. To our knowledge, this is the most detailed study of the spatial and temporal variation in any geothermal spring. The study underscores the distinctness of planktonic and benthic communities and the importance of temperature in driving the spatial variation of microbial phylotypes throughout the mineralogically homogenous source pool. 8

    Genomic foundations of carbon fixation in bacteria living in hot springs

    Full text link
    Photosynthesis does not occur above 73°C, so organisms living above this temperature must obtain useable carbon by some other mechanism. It is generally assumed that carbon is fixed by thermophiles through the process of chemolithoautotrophy; however, primary production has never been demonstrated to occur in hot springs \u3e73°C. We have shown that two organisms, Thermocrinis and Pyrobaculum, make up more than 90% of the cells in an 80°C Great Basin hot spring, Great Boiling Spring. We hypothesize that these organisms fix carbon in the hot spring via the reverse tricarboxylic acid (rTCA) cycle. To test this hypothesis we will: i) confirm that Thermocrinis and Pyrobaculum dominate in water from the spring; ii) determine whether key genes for the rTCA cycle, citryl co-A lyase (ccl), 2-oxoglutarate:ferredoxin oxidoreductase (korA), pyruvate:ferredoxin oxidoreductase (porA), are present and expressed in the spring; and iii) measure rates of carbon fixation in the spring. Linkage of the genetic data with carbon fixation rate data may help to provide an image of carbon fixation and cycling in Great Basin hot springs

    Isolation, characterization, and genome sequence of the first representative of a novel class within the Chloroflexi that is abundant in some U.S. Great Basin hot springs and may play important roles in N and C cycling

    Full text link
    A thermophilic, facultatively microaerophilic, heterotrophic bacterium, designated strain JAD2, was isolated from sediments of Great Boiling Spring (GBS), an ~80oC, circumneutral hot spring in the Great Basin GB). The strain grew anaerobically on yeast extract or peptone with an optimal growth temperature of 70-75oC. Growth was stimulated by addition of 0.01 atm O2 to the culture vessel headspace, but was inhibited by higher concentrations (0.2 atm). Cells of JAD2 formed non-motile filaments ranging from 10 to \u3e300 μm in length, which typically decreased in length during stationary phase. 16S rRNA gene-targeted pyrotag sequencing and clone library data suggest that close relatives of this isolate are prominent members of the sediment communities in GBS. Shotgun sequencing of the JAD2 genome produced an assembly consisting of ~3.2 Mbp with an average G+C content of 67.3%. Phylogenies inferred from the 16S rRNA gene and predicted amino acid sequences of various conserved proteins indicate that JAD2 is the first cultivated representative of the GAL35 group, a new class within the Chloroflexi. Predicted genes in the draft genome encoding a putative carbon monoxide dehydrogenase (coxMSL), nitrite reductase (nrfHA) and nitrous oxide reductase (nosZ) suggest that this isolate may play important roles in N and C cycling in GBS sediments

    Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae)

    Get PDF
    We investigate the timing of diversification in allopolyploids of Nicotiana (Solanaceae) utilising sequence data of maternal and paternal origin to look for evidence of a lag phase during which diploidisation took place. Bayesian relaxed clock phylogenetic methods show recent allopolyploids are a result of several unique polyploidisation events, and older allopolyploid sections have undergone subsequent speciation at the polyploid level (i.e. a number of these polyploid species share a singular origin). The independently formed recent polyploid species in the genus all have mean age estimates below 1 million years ago (Ma). Nicotiana  section Polydicliae (two species) evolved 1.5 Ma, N. section Repandae (four species) formed 4 Ma, and N. section Suaveolentes (*35 species) is about 6 million years old. A general trend of higher speciation rates in older polyploids is evident, but diversification dramatically increases at approximately 6 Ma (in section Suaveolentes). Nicotiana sect. Suaveolentes has spectacularly radiated to form 35 species in Australia and some Pacific islands following a lag phase of almost 6 million years. Species have filled new ecological niches and undergone extensive diploidisation (e.g. chromosome fusions bringing the ancestral allotetraploid number, n = 24, down to n = 15 and ribosomal loci numbers back to diploid condition). Considering the progenitors of Suaveolentes inhabit South America, this represents the colonisation of Australia by polyploids that have subsequently undergone a recent radiation into new environments. To our knowledge, this study is the first report of a substantial lag phase being investigated below the family level

    Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes

    Get PDF
    The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This “microbial dark matter” represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum “Calescamantes” (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs.This work was supported by NASA exobiology grant EXO-NNX11AR78G, U.S. National Science Foundation grant OISE 0968421, and U.S. Department of Energy grant DE-EE-0000716. B.P.H. acknowledges generous support from Greg Fullmer through the UNLV Foundation, and W.S. acknowledges Northern Illinois University for funding. B.P.H and S.K.M. acknowledge support from an Amazon Web Services Education Research Grant award. The work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231. This article is made openly accessible in part by an award from the Northern Illinois University Libraries’ Open Access Publishing Fund

    Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage

    Get PDF
    OP9 is a yet-uncultivated bacterial lineage found in geothermal systems, petroleum reservoirs, anaerobic digesters and wastewater treatment facilities. Here we use single-cell and metagenome sequencing to obtain two distinct, nearly complete OP9 genomes, one constructed from single cells sorted from hot spring sediments and the other derived from binned metagenomic contigs from an in situ-enriched cellulolytic, thermophilic community. Phylogenomic analyses support the designation of OP9 as a candidate phylum for which we propose the name ‘Atribacteria’. Although a plurality of predicted proteins is most similar to those from Firmicutes, the presence of key genes suggests a diderm cell envelope. Metabolic reconstruction from the core genome suggests an anaerobic lifestyle based on sugar fermentation by Embden–Meyerhof glycolysis with production of hydrogen, acetate and ethanol. Putative glycohydrolases and an endoglucanase may enable catabolism of (hemi)cellulose in thermal environments. This study lays a foundation for understanding the physiology and ecological role of the ‘Atribacteria’.United States. National Aeronautics and Space Administration (Exobiology Grant EXO-NNX11AR78G)National Science Foundation (U.S.) (Grant MCB 0546865)National Science Foundation (U.S.) (Grant OISE 0968421)United States. Dept. of Energy (Grant DE-EE-0000716)Nevada Renewable Energy ConsortiumUnited States. Dept. of Energy. Office of Science. Joint Genome Institute (Contract DE-AC02-05CH11231

    Transcriptome Sequencing of Hevea brasiliensis for Development of Microsatellite Markers and Construction of a Genetic Linkage Map

    Get PDF
    To obtain more information on the Hevea brasiliensis genome, we sequenced the transcriptome from the vegetative shoot apex yielding 2 311 497 reads. Clustering and assembly of the reads produced a total of 113 313 unique sequences, comprising 28 387 isotigs and 84 926 singletons. Also, 17 819 expressed sequence tag (EST)-simple sequence repeats (SSRs) were identified from the data set. To demonstrate the use of this EST resource for marker development, primers were designed for 430 of the EST-SSRs. Three hundred and twenty-three primer pairs were amplifiable in H. brasiliensis clones. Polymorphic information content values of selected 47 SSRs among 20 H. brasiliensis clones ranged from 0.13 to 0.71, with an average of 0.51. A dendrogram of genetic similarities between the 20 H. brasiliensis clones using these 47 EST-SSRs suggested two distinct groups that correlated well with clone pedigree. These novel EST-SSRs together with the published SSRs were used for the construction of an integrated parental linkage map of H. brasiliensis based on 81 lines of an F1 mapping population. The map consisted of 97 loci, consisting of 37 novel EST-SSRs and 60 published SSRs, distributed on 23 linkage groups and covered 842.9 cM with a mean interval of 11.9 cM and ∼4 loci per linkage group. Although the numbers of linkage groups exceed the haploid number (18), but with several common markers between homologous linkage groups with the previous map indicated that the F1 map in this study is appropriate for further study in marker-assisted selection

    Parent Stars of Extrasolar Planets VII: New Abundance Analyses of 30 Systems

    Get PDF
    The results of new spectroscopic analyses of 30 stars with giant planet and/or brown dwarf companions are presented. Values for Teff and [Fe/H] are used in conjunction with Hipparcos data and Padova isochrones to derive masses, ages, and theoretical surface gravities. These new data are combined with spectroscopic and photometric metallicity estimates of other stars harboring planets and published samples of F, G, and K dwarfs to compare several subsets of planet bearing stars with similarly well-constrained control groups. The distribution of [Fe/H] values continues the trend uncovered in previous studies in that stars hosting planetary companions have a higher mean value than otherwise similar nearby stars. We also investigate the relationship between stellar mass and the presence of giant planets and find statistically marginal but suggestive evidence of a decrease in the incidence of radial velocity companions orbiting relatively less massive stars. If confirmed with larger samples, this would represent a critical constraint to both planetary formation models as well as to estimates of the distribution of planetary systems in our galaxy.Comment: 27 pages, 13 figures. Accepted for publication in The Astronomical Journa
    corecore