767 research outputs found

    Microscopic models of quantum jump super-operators

    Full text link
    We discuss the quantum jump operation in an open system, and show that jump super-operators related to a system under measurement can be derived from the interaction of that system with a quantum measurement apparatus. We give two examples for the interaction of a monochromatic electromagnetic field in a cavity (the system) with 2-level atoms and with a harmonic oscillator (representing two different kinds of detectors). We show that derived quantum jump super-operators have `nonlinear' form which depends on assumptions made about the interaction between the system and the detector. A continuous transition to the standard Srinivas--Davies form of the quantum jump super-operatoris shown

    The effective electrical conductivity of a two-phase liquid-metal flow

    Get PDF
    Electrical conductivity of two phase liquid metal flow in magnetohydrodynamic generato

    Vibrating Cavities - A numerical approach

    Full text link
    We present a general formalism allowing for efficient numerical calculation of the production of massless scalar particles from vacuum in a one-dimensional dynamical cavity, i.e. the dynamical Casimir effect. By introducing a particular parametrization for the time evolution of the field modes inside the cavity we derive a coupled system of first-order linear differential equations. The solutions to this system determine the number of created particles and can be found by means of numerical methods for arbitrary motions of the walls of the cavity. To demonstrate the method which accounts for the intermode coupling we investigate the creation of massless scalar particles in a one-dimensional vibrating cavity by means of three particular cavity motions. We compare the numerical results with analytical predictions as well as a different numerical approach.Comment: 28 pages, 19 figures, accepted for publication in J. Opt. B: Quantum Semiclass. Op

    Resonant photon creation in a three dimensional oscillating cavity

    Get PDF
    We analyze the problem of photon creation inside a perfectly conducting, rectangular, three dimensional cavity with one oscillating wall. For some particular values of the frequency of the oscillations the system is resonant. We solve the field equation using multiple scale analysis and show that the total number of photons inside the cavity grows exponentially in time. This is also the case for slightly off-resonance situations. Although the spectrum of a cavity is in general non equidistant, we show that the modes of the electromagnetic field can be coupled, and that the rate of photon creation strongly depends on this coupling. We also analyze the thermal enhancement of the photon creation.Comment: 13 pages. New section on off-resonance motion is included. To appear in Physical Review

    Truncated states obtained by iteration

    Full text link
    Quantum states of the electromagnetic field are of considerable importance, finding potential application in various areas of physics, as diverse as solid state physics, quantum communication and cosmology. In this paper we introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST. A general method to engineer TSI in the running-wave domain is employed, which includes the errors due to the nonidealities of detectors and photocounts.Comment: 10 pages, 22 figure

    Quantum singular oscillator as a model of two-ion trap: an amplification of transition probabilities due to small time variations of the binding potential

    Full text link
    Following the paper by M. Combescure [Ann. Phys. (NY) 204, 113 (1990)], we apply the quantum singular time dependent oscillator model to describe the relative one dimensional motion of two ions in a trap. We argue that the model can be justified for low energy excited states with the quantum numbers nnmax100n\ll n_{max}\sim 100, provided that the dimensionless constant characterizing the strength of the repulsive potential is large enough, g105g_*\sim 10^5. Time dependent Gaussian-like wave packets generalizing odd coherent states of the harmonic oscillator, and excitation number eigenstates are constructed. We show that the relative motion of the ions, in contradistinction to its center of mass counterpart, is extremely sensitive to the time dependence of the binding harmonic potential, since the large value of gg_* results in a significant amplification of the transition probabilities between energy eigenstate even for slow time variations of the frequency.Comment: 19 pages, LaTeX, 5 eps-figures, to appear on Phys. Rev. A, one reference correcte

    Properties of Squeezed-State Excitations

    Get PDF
    The photon distribution function of a discrete series of excitations of squeezed coherent states is given explicitly in terms of Hermite polynomials of two variables. The Wigner and the coherent-state quasiprobabilities are also presented in closed form through the Hermite polynomials and their limiting cases. Expectation values of photon numbers and their dispersion are calculated. Some three-dimensional plots of photon distributions for different squeezing parameters demonstrating oscillatory behaviour are given.Comment: Latex,35 pages,submitted to Quant.Semiclassical Op

    Noether's Theorem and time-dependent quantum invariants

    Full text link
    The time dependent-integrals of motion, linear in position and momentum operators, of a quantum system are extracted from Noether's theorem prescription by means of special time-dependent variations of coordinates. For the stationary case of the generalized two-dimensional harmonic oscillator, the time-independent integrals of motion are shown to correspond to special Bragg-type symmetry properties. A detailed study for the non-stationary case of this quantum system is presented. The linear integrals of motion are constructed explicitly for the case of varying mass and coupling strength. They are obtained also from Noether's theorem. The general treatment for a multi-dimensional quadratic system is indicated, and it is shown that the time-dependent variations that give rise to the linear invariants, as conserved quantities, satisfy the corresponding classical homogeneous equations of motion for the coordinates.Comment: Plain TeX, 23 pages, preprint of Instituto de Ciencias Nucleares, UNAM Departamento de F\ii sica and Matem\'aticas Aplicadas, No. 01 (1994

    On the measure of nonclassicality of field states

    Get PDF
    The degree of nonclassicality of states of a field mode is analysed considering both phase-space and distance-type measures of nonclassicality. By working out some general examples, it is shown explicitly that the phase-space measure is rather sensitive to superposition of states, with finite superpositions possessing maximum nonclassical depth (the highest degree of nonclassicality) irrespective to the nature of the component states. Mixed states are also discussed and examples with nonclassical depth varying between the minimum and the maximum allowed values are exhibited. For pure Gaussian states, it is demonstrated that distance-type measures based on the Hilbert-Schmidt metric are equivalent to the phase-space measure. Analyzing some examples, it is shown that distance-type measures are efficient to quantify the degree of nonclassicality of non-Gaussian pure states.Comment: Latex, 21 pages, 1 figur

    Continuous photodetection model: quantum jump engineering and hints for experimental verification

    Get PDF
    We examine some aspects of the continuous photodetection model for photocounting processes in cavities. First, we work out a microscopic model that describes the field-detector interaction and deduce a general expression for the Quantum Jump Superoperator (QJS), that shapes the detector's post-action on the field upon a detection. We show that in particular cases our model recovers the QJSs previously proposed ad hoc in the literature and point out that by adjusting the detector parameters one can engineer QJSs. Then we set up schemes for experimental verification of the model. By taking into account the ubiquitous non-idealities, we show that by measuring the lower photocounts moments and the mean waiting time one can check which QJS better describes the photocounting phenomenon.Comment: 12 pages, 7 figures. Contribution to the conference Quantum Optics III, Pucon - Chile, November 27-30, 200
    corecore