98 research outputs found

    Calibrated X-ray micro-tomography for mineral ore quantification

    Get PDF
    Scanning Electron Microscopy (SEM) based assessments are the most widely used and trusted imaging technique for mineral ore quantification. X-ray micro tomography (XMT) is a more recent addition to the mineralogy toolbox, but with the potential to extend the measurement capabilities into the three dimensional (3D) assessment of properties such as mineral liberation, grain size and textural characteristics. In addition, unlike SEM based assessments which require the samples to be sectioned, XMT is non-invasive and non-destructive. The disadvantage of XMT, is that the mineralogy must be inferred from the X-ray attenuation measurements, which can make it hard to distinguish from one another, whereas SEM when coupled with Energy-Dispersive X-ray Spectroscopy (EDX) provides elemental compositions and thus a more direct method for distinguishing different minerals. A new methodology that combines both methods at the mineral grain level is presented. The rock particles used to test the method were initially imaged in 3D using XMT followed by sectioning and the 2D imaging of the slices using SEM-EDX. An algorithm was developed that allowed the mineral grains in the 2D slice to be matched with their 3D equivalents in the XMT based images. As the mineralogy of the grains from the SEM images can be matched to a range of X-ray attenuations, this allows minerals which have similar attenuations to one another to be distinguished, with the level of uncertainty in the classification quantified. In addition, the methodology allowed for the estimation of the level of uncertainty in the quantification of grain size by XMT, the assessment of stereological effects in SEM 2D images and ultimately obtaining a simplified 3D mineral map from low energy XMT images. Copper sulphide ore fragments, with chalcopyrite and pyrite as the main sulphide minerals, were used to demonstrate the effectiveness of this procedure

    Micro-fabricated caesium vapour cell with 5mm optical path length

    Get PDF
    Micro-fabricated vapour cells have applications in a number of emerging quantum technology based devices including miniaturized atomic magnetometers, atomic clocks and frequency references for laser systems. Increasing the cell optical path length (OPL) and smallest cell dimension is normally desirable to increase the signal to noise ratio (SNR) and minimize the de-polarization rate due to collisions between atomic or molecular species and the cell walls. This paper presents a fully wafer-level scalable fabrication process to manufacture vapour cells with dimensions approaching those of glass-blown cells. The fabrication process is described and spectroscopic measurements (optical absorption and magnetic resonance) are reported. A magnetic resonance linewidth of 350 Hz is demonstrated, this is the smallest linewidth reported to date for a micro-fabricated vapour cell

    Multiple functional self-association interfaces in plant TIR domains

    Get PDF
    The self-association of Toll/interleukin-1 receptor/resistance protein (TIR) domains has been implicated in signaling in plant and animal immunity receptors. Structure-based studies identified different TIR-domain dimerization interfaces required for signaling of the plant nucleotide-binding oligomerization domain-like receptors (NLRs) L6 from flax and disease resistance protein RPS4 from Arabidopsis. Here we show that the crystal structure of the TIR domain from the Arabidopsis NLR suppressor of npr1-1, constitutive 1 (SNC1) contains both an L6-like interface involving helices alpha D and alpha E (DE interface) and an RPS4-like interface involving helices alpha A and alpha E (AE interface). Mutations in either the AE- or DE-interface region disrupt cell-death signaling activity of SNC1, L6, and RPS4 TIR domains and full-length L6 and RPS4. Self-association of L6 and RPS4 TIR domains is affected by mutations in either region, whereas only AE-interface mutations affect SNC1 TIR-domain self-association. We further show two similar interfaces in the crystal structure of the TIR domain from the Arabidopsis NLR recognition of Peronospora parasitica 1 (RPP1). These data demonstrate that both the AE and DE self-association interfaces are simultaneously required for self-association and cell-death signaling in diverse plant NLRs.11139Ysciescopu

    Defining standards and core outcomes for clinical trials in prehabilitation for colorectal surgery (DiSCO): modified Delphi methodology to achieve patient and healthcare professional consensus

    Get PDF

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Gas jet attitude control of flexible spacecraft

    Get PDF
    Incl. 6 reprints in back pocketAvailable from British Library Document Supply Centre- DSC:D69476/86 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    HyperMacs. Long chain branched analogues of hyperbranched polymers prepared by the polycondensation of AB(2) macromonomers.

    No full text
    We describe here a new strategy for the synthesis of polymers with highly branched architectures. The strategy involves the synthesis by anionic polymerization of well-defined AB2 polystyrene macromonomers with molecular weights from 3,600 to 94,000 gmol−1, which are then converted via a one-pot polycondensation reaction into high molecular weight, long-chain (hyper)branched architectures. Since the Hyperbranched structures are built up from condensation Macromonomers we have coined the term ‘HyperMac’ to describe these branched polymers. In this paper we report the synthesis of the HyperMacs, the optimal conditions for the polycondensation reaction and some preliminary characterization studies

    HyperMacs: Highly branched polymers prepared by the polycondensation of AB₂ macromonomers, synthesis and characterization

    No full text
    We describe here a new strategy for the synthesis of polymers with highly branched architectures. The strategy involves the synthesis by anionic polymerization of well-defined AB(2) polystyrene (condensation) macromonomers with molecular weights from 3500 to 38 000 g mol(-1), which are then converted via a one-pot polycondensation reaction into high-molecular-weight, long-chain (hyper)branched architectures. Because the hyperbranched structures are built up from condensation macromonomers, we have coined the term "HyperMac" to describe these branched polymers. In this paper, we report the synthesis of the macromonomers, the optimal conditions for the polycondensation reaction, and some preliminary characterization studies
    corecore