9 research outputs found

    Characterization of primary afferent spinal innervation of mouse uterus

    Get PDF
    This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP). Using retrograde tracing, injection of 5–10 μL of 1,1′-didodecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI) into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG) with peak labeling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labeled cells was 463 μm2 ± s.e.m. A significantly greater proportion of labeled neurons consisted of small cell bodies (<300 μm2) in the sacral spinal cord (S2) compared with peak labeling at the lumbar (L2) region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibers located primarily at the border between the circular and longitudinal muscle layers (N = 4). The nerve endings were classified into three distinct types: “single,” “branching,” or “complex,” that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus

    Neurogenic and myogenic motor activity in the colon of the guinea pig, mouse, rabbit, and rat

    No full text
    This article appeared in a journal published by the American Physiological Society. Under American Physiological Society's copyright, authors are not permitted to make work available in an institutional repository

    Image_1_Anatomical distribution of CGRP-containing lumbosacral spinal afferent neurons in the mouse uterine horn.TIF

    No full text
    Sensory stimuli from the uterus are detected by spinal afferent neurons whose cell bodies arise from thoracolumbar and lumbosacral dorsal root ganglia (DRG). Using an in vivo survival surgical technique developed in our laboratory to remove select DRG from live mice, we recently quantified the topographical distribution of thoracolumbar spinal afferents innervating the mouse uterine horn, revealed by loss of immunoreactivity to calcitonin gene-related peptide (CGRP). Here, we used the same technique to investigate the distribution of lumbosacral uterine spinal afferents, in which L5-S1 DRG were unilaterally removed from adult female C57BL/6J mice (N = 6). Following 10–12 days recovery, CGRP immunoreactivity was quantified along the length of uterine horns using fluorescence immunohistochemistry. Relative to myometrial thickness, overall CGRP density in uterine tissues ipsilateral to L5-S1 DRG removal was reduced compared to the DRG-intact, contralateral side (P = 0.0265). Regionally, however, myometrial CGRP density was unchanged in the cranial, mid, and caudal portions. Similarly, CGRP-expressing nerve fiber counts, network lengths, junctions, and the proportion of area occupied by CGRP immunoreactivity were unaffected by DRG removal (P ≥ 0.2438). Retrograde neuronal tracing from the caudal uterine horn revealed fewer spinal afferents here arise from lumbosacral than thoracolumbar DRG (P = 0.0442) (N = 4). These data indicate that, unlike thoracolumbar DRG, lumbosacral spinal afferent nerves supply relatively modest sensory innervation across the mouse uterine horn, with no regional specificity. We conclude most sensory information between the mouse uterine horn and central nervous system is likely relayed via thoracolumbar spinal afferents.</p

    Neurally mediated propagating discrete clustered contractions superimposed on myogenic ripples in ex vivo segments of human ileum

    No full text
    This article appeared in a journal published by the American Physiological Society. Under the American Physiological Society's copyright, authors are not permitted to make work available in an institutional repository
    corecore