7 research outputs found

    A three-drug nanoscale drug delivery system designed for preferential lymphatic uptake for the treatment of metastatic melanoma

    Get PDF
    Metastatic melanoma has a high mortality rate due to lymphatic progression of the disease. Current treatment is surgery followed by radiation and intravenous chemotherapy. However, drawbacks for current chemotherapeutics lie in the fact that they develop resistance and do not achieve therapeutic concentrations in the lymphatic system. We hypothesize that a three-drug nanoscale drug delivery system, tailored for lymphatic uptake, administered subcutaneously, will have decreased drug resistance and therefore offer better therapeutic outcomes. We prepared and characterized nanoparticles (NPs) with docetaxel, everolimus, and LY294002 in polyethyleneglycol-block-poly(ε-caprolactone) (PEG-PCL) polymer with different charge distributions by modifying the ratio of anionic and neutral end groups on the PEG block. These NPs are similarly sized (~48nm), with neutral, partially charged, or fully charged surface. The NPs are able to load ~2mg/mL of each drug and are stable for 24h. The NPs are assessed for safety and efficacy in two transgenic metastatic melanoma mouse models. All the NPs were safe in both models based on general appearance, weight changes, death, and blood biochemical analyses. The partially charged NPs are most effective in decreasing the number of melanocytes at both the proximal (sentinel) lymph node (LN) and the distal LN from the injection site. The neutral NPs are efficacious at the proximal LN, while the fully charged NPs have no effect on either LNs. Thus, our data indicates that the NP surface charge and lymphatic efficacy are closely tied to each other and the partially charged NPs have the highest potential in treating metastatic melanoma

    Naphthalocyanine-Based Biodegradable Polymeric Nanoparticles for Image-Guided Combinatorial Phototherapy

    No full text
    Image-guided phototherapy is extensively considered as a promising therapy for cancer treatment. To enhance translational potential of this modality, we developed a single agent-based biocompatible nanoplatform that provides both real time near-infrared (NIR) fluorescence imaging and combinatorial phototherapy with dual photothermal and photodynamic therapeutic mechanisms. The developed theranostic nanoplatform consists of two building blocks: (1) silicon naphthalocyanine (SiNc) as a NIR fluorescence imaging and phototherapeutic agent and (2) a copolymer, poly­(ethylene glycol)-<i>block</i>-poly­(ε-caprolactone) (PEG–PCL) as the biodegradable SiNc carrier. Our simple, highly reproducible, and robust approach results in preparation of spherical, monodisperse SiNc-loaded PEG–PCL polymeric nanoparticles (SiNc-PNP) with a hydrodynamic size of 37.66 ± 0.26 nm (polydispersity index = 0.06) and surface charge of −2.76 ± 1.83 mV. The SiNc-loaded nanoparticles exhibit a strong NIR light absorption with an extinction coefficient of 2.8 × 10<sup>5</sup> M<sup>–1</sup> cm<sup>–1</sup> and efficiently convert the absorbed energy into fluorescence emission (Φ<sub>F</sub> = 11.8%), heat (Δ<i>T</i> ∼ 25 °C), and reactive oxygen species. Moreover, the SiNc-PNP are characterized by superior photostability under extensive photoirradiation and structure integrity during storage at room temperature over a period of 30 days. Following intravenous injection, the SiNc-PNP accumulated selectively in tumors and provided high lesion-to-normal tissue contrast for sensitive fluorescence detection. Finally, adriamycin-resistant tumors treated with a single intravenous dose of SiNc-PNP (1.5 mg/kg) combined with 10 min of a 785 nm light irradiation (1.3 W/cm<sup>2</sup>) were completely eradicated from the mice without cancer recurrence or side effects. The reported characteristics make the developed SiNc-PNP a promising platform for future clinical application
    corecore