13,316 research outputs found

    Building An Adequate Pasture Program

    Get PDF
    PDF pages: 1

    Sudan Grass, Soybeans, and Other Supplementary Hay and Pasture Crops

    Get PDF
    PDF pages:

    Permanent Pastures Treatment and Management

    Get PDF
    PDF pages: 1

    The Southern Vilnius Photometric System. IV. The E Regions Standard Stars

    Full text link
    This paper is the fourth in a series on the extension of the Vilnius photometric system to the southern hemisphere. Observations were made of 60 stars in the Harvard Standard E regions to increase a set of standard stars.Comment: 6 pages, TeX, requires 2 macros (baltic2.tex, baltic4.tex) included no figures, to be published in Baltic Astronomy, Vol 6, pp1-6 (1997

    Music increases alcohol consumption rate in young females

    Get PDF

    Titanium-Oxygen Bond Length -Bond Valence Relationship

    Get PDF
    A bond length–bond valence correlation is a simple method of checking and evaluating molecular structures and is of great interest in chemistry, biology, geology, and material science. Recently, we used quantum-mechanical arguments to derive Pauling’s bond length-valence relationship and to define the adjustable fitting parameter b in terms of atomic-orbital exponents. Improved orbital exponents were generated for elements 1-103 using published atomic radii and single-bond covalent radii as well as a continuous function for effective principal quantum number. In this study, we use orbital exponents for titanium (Ti) and oxygen (O) to generate a bond length-valence relationship for Ti-O bonds. Recent crystallographic Ti-O bond lengths from 32 environments were collected and converted to Ti-O bond valences to check the reliability of the bond length-valence relationship where Ro was found (bond length of unit valence). This relationship is expected to apply to any Ti-O bond regardless of environment, physical state, or oxidation number

    Nonlinear Band Gap Transmission in Optical Waveguide Arrays

    Full text link
    The effect of nonlinear transmission in coupled optical waveguide arrays is theoretically investigated via numerical simulations on the corresponding model equations. The realistic experimental setup is suggested injecting the beam in a single boundary waveguide, linear refractive index of which (n0n_0) is larger than one (nn) of other identical waveguides in the array. Particularly, the effect holds if ω(n0n)/c>2Q\omega(n_0-n)/c>2Q, where QQ is a linear coupling constant between array waveguides, ω\omega is a carrier wave frequency and cc is a light velocity. Making numerical experiments in case of discrete nonlinear Schr\"odinger equation it is shown that the energy transfers from the boundary waveguide to the waveguide array above certain threshold intensity of the injected beam. This effect is explained by means of the creation and propagation of gap solitons in full analogy with the similar phenomenon of nonlinear supratransmission [F. Geniet, J. Leon, PRL, {\bf 89}, 134102, (2002)] in case of discrete sine-Gordon lattice.Comment: 4 pages, 6 figures. Phys. Rev. Lett. (in press
    corecore