13,316 research outputs found
The Southern Vilnius Photometric System. IV. The E Regions Standard Stars
This paper is the fourth in a series on the extension of the Vilnius
photometric system to the southern hemisphere. Observations were made of 60
stars in the Harvard Standard E regions to increase a set of standard stars.Comment: 6 pages, TeX, requires 2 macros (baltic2.tex, baltic4.tex) included
no figures, to be published in Baltic Astronomy, Vol 6, pp1-6 (1997
Titanium-Oxygen Bond Length -Bond Valence Relationship
A bond length–bond valence correlation is a simple method of checking and evaluating molecular structures and is of great interest in chemistry, biology, geology, and material science. Recently, we used quantum-mechanical arguments to derive Pauling’s bond length-valence relationship and to define the adjustable fitting parameter b in terms of atomic-orbital exponents. Improved orbital exponents were generated for elements 1-103 using published atomic radii and single-bond covalent radii as well as a continuous function for effective principal quantum number. In this study, we use orbital exponents for titanium (Ti) and oxygen (O) to generate a bond length-valence relationship for Ti-O bonds. Recent crystallographic Ti-O bond lengths from 32 environments were collected and converted to Ti-O bond valences to check the reliability of the bond length-valence relationship where Ro was found (bond length of unit valence). This relationship is expected to apply to any Ti-O bond regardless of environment, physical state, or oxidation number
Nonlinear Band Gap Transmission in Optical Waveguide Arrays
The effect of nonlinear transmission in coupled optical waveguide arrays is
theoretically investigated via numerical simulations on the corresponding model
equations. The realistic experimental setup is suggested injecting the beam in
a single boundary waveguide, linear refractive index of which () is larger
than one () of other identical waveguides in the array. Particularly, the
effect holds if , where is a linear coupling constant
between array waveguides, is a carrier wave frequency and is a
light velocity. Making numerical experiments in case of discrete nonlinear
Schr\"odinger equation it is shown that the energy transfers from the boundary
waveguide to the waveguide array above certain threshold intensity of the
injected beam. This effect is explained by means of the creation and
propagation of gap solitons in full analogy with the similar phenomenon of
nonlinear supratransmission [F. Geniet, J. Leon, PRL, {\bf 89}, 134102, (2002)]
in case of discrete sine-Gordon lattice.Comment: 4 pages, 6 figures. Phys. Rev. Lett. (in press
- …
