9,186 research outputs found
Nonlinear Band Gap Transmission in Optical Waveguide Arrays
The effect of nonlinear transmission in coupled optical waveguide arrays is
theoretically investigated via numerical simulations on the corresponding model
equations. The realistic experimental setup is suggested injecting the beam in
a single boundary waveguide, linear refractive index of which () is larger
than one () of other identical waveguides in the array. Particularly, the
effect holds if , where is a linear coupling constant
between array waveguides, is a carrier wave frequency and is a
light velocity. Making numerical experiments in case of discrete nonlinear
Schr\"odinger equation it is shown that the energy transfers from the boundary
waveguide to the waveguide array above certain threshold intensity of the
injected beam. This effect is explained by means of the creation and
propagation of gap solitons in full analogy with the similar phenomenon of
nonlinear supratransmission [F. Geniet, J. Leon, PRL, {\bf 89}, 134102, (2002)]
in case of discrete sine-Gordon lattice.Comment: 4 pages, 6 figures. Phys. Rev. Lett. (in press
Localized matter-waves patterns with attractive interaction in rotating potentials
We consider a two-dimensional (2D) model of a rotating attractive
Bose-Einstein condensate (BEC), trapped in an external potential. First, an
harmonic potential with the critical strength is considered, which generates
quasi-solitons at the lowest Landau level (LLL). We describe a family of the
LLL quasi-solitons using both numerical method and a variational approximation
(VA), which are in good agreement with each other. We demonstrate that kicking
the LLL mode or applying a ramp potential sets it in the Larmor (cyclotron)
motion, that can also be accurately modeled by the VA.Comment: 13 pages, 11 figure
Gapless finite- theory of collective modes of a trapped gas
We present predictions for the frequencies of collective modes of trapped
Bose-condensed Rb atoms at finite temperature. Our treatment includes a
self-consistent treatment of the mean-field from finite- excitations and the
anomolous average. This is the first gapless calculation of this type for a
trapped Bose-Einstein condensed gas. The corrections quantitatively account for
the downward shift in the excitation frequencies observed in recent
experiments as the critical temperature is approached.Comment: 4 pages Latex and 2 postscript figure
Effects of temperature upon the collapse of a Bose-Einstein condensate in a gas with attractive interactions
We present a study of the effects of temperature upon the excitation
frequencies of a Bose-Einstein condensate formed within a dilute gas with a
weak attractive effective interaction between the atoms. We use the
self-consistent Hartree-Fock Bogoliubov treatment within the Popov
approximation and compare our results to previous zero temperature and
Hartree-Fock calculations The metastability of the condensate is monitored by
means of the excitation frequency. As the number of atoms in the
condensate is increased, with held constant, this frequency goes to zero,
signalling a phase transition to a dense collapsed state. The critical number
for collapse is found to decrease as a function of temperature, the rate of
decrease being greater than that obtained in previous Hartree-Fock
calculations.Comment: 4 pages LaTeX, 3 eps figures. To appear as a letter in J. Phys.
Long-range sound-mediated dark soliton interactions in trapped atomic condensates
A long-range soliton interaction is discussed whereby two or more dark
solitons interact in an inhomogeneous atomic condensate, modifying their
respective dynamics via the exchange of sound waves without ever coming into
direct contact. An idealized double well geometry is shown to yield perfect
energy transfer and complete periodic identity reversal of the two solitons.
Two experimentally relevant geometries are analyzed which should enable the
observation of this long-range interaction
Recoverin Regulates Light-dependent Phosphodiesterase Activity in Retinal Rods
The Ca2+-binding protein recoverin may regulate visual transduction in retinal rods and cones, but its functional role and mechanism of action remain controversial. We compared the photoresponses of rods from control mice and from mice in which the recoverin gene was knocked out. Our analysis indicates that Ca2+-recoverin prolongs the dark-adapted flash response and increases the rod's sensitivity to dim steady light. Knockout rods had faster Ca2+ dynamics, indicating that recoverin is a significant Ca2+ buffer in the outer segment, but incorporation of exogenous buffer did not restore wild-type behavior. We infer that Ca2+-recoverin potentiates light-triggered phosphodiesterase activity, probably by effectively prolonging the catalytic activity of photoexcited rhodopsin
Gas Purity effect on GEM Performance in He and Ne at Low Temperatures
The performance of Gas Electron Multipliers (GEMs) in gaseous He, Ne, He+H2
and Ne+H2 was studied at temperatures in the range of 3-293 K. This paper
reports on previously published measurements and additional studies on the
effects of the purity of the gases in which the GEM performance is evaluated.
In He, at temperatures between 77 and 293 K, triple-GEM structures operate at
rather high gains, exceeding 1000. There is an indication that this high gain
is achieved through the Penning effect as a result of impurities in the gas. At
lower temperatures the gain-voltage characteristics are significantly modified
probably due to the freeze-out of these impurities. Double-GEM and single-GEM
structures can operate down to 3 K at gains reaching only several tens at a gas
density of about 0.5 g/l; at higher densities the maximum gain drops further.
In Ne, the maximum gain also drops at cryogenic temperatures. The gain drop in
Ne at low temperatures can be re-established in Penning mixtures of Ne+H2: very
high gains, exceeding 104, have been obtained in these mixtures at 30-77 K, at
a density of 9.2 g/l which corresponds to saturated Ne vapor density at 27 K.
The addition of small amounts of H2 in He also re-establishes large GEM gains
above 30 K but no gain was observed in He+H2 at 4 K and a density of 1.7 g/l
(corresponding to roughly one-tenth of the saturated vapor density). These
studies are, in part, being pursued in the development of two-phase He and Ne
detectors for solar neutrino detection.Comment: 4 pages, 7 figure
Discrete surface solitons in two dimensions
We investigate fundamental localized modes in 2D lattices with an edge
(surface). Interaction with the edge expands the stability area for ordinary
solitons, and induces a difference between perpendicular and parallel dipoles;
on the contrary, lattice vortices cannot exist too close to the border.
Furthermore, we show analytically and numerically that the edge stabilizes a
novel wave species, which is entirely unstable in the uniform lattice, namely,
a "horseshoe" soliton, consisting of 3 sites. Unstable horseshoes transform
themselves into a pair of ordinary solitons.Comment: 6 pages, 4 composite figure
Experimental study of bore-driven swash hydrodynamics on impermeable rough slopes
Copyright 2012 Elsevier B.V., All rights reserved.Peer reviewedPublisher PD
Inequalities and inclusion in exercise referral schemes: a mixed-method multi-scheme analysis
Physical activity prescription, commonly through exercise referral schemes, is an established disease prevention and management pathway. There is considerable heterogeneity in terms of uptake, adherence, and outcomes, but because within-scheme analyses dominate previous research, there is limited contextual understanding of this variance. Both the impact of schemes on health inequalities and best practices for inclusion of at-risk groups are unclear. To address this, we modelled secondary data from the multi-scheme National Referral Database, comprising 23,782 individuals across 14 referral schemes, using a multilevel Bayesian inference approach. Scheme-level local demographics identified over-sampling in uptake; on the basis of uptake and completion data, more inclusive schemes (n = 4) were identified. Scheme coordinators were interviewed, and data were analyzed using a grounded theory approach. Inequalities presented in a nuanced way. Schemes showed promise for engaging populations at greater risk of poor health (e.g., those from more deprived areas or of an ethnic minority background). However, the completion odds were lower for those with a range of complex circumstances (e.g., a mental health-related referral). We identified creative best practices for widening access (e.g., partnership building), maintaining engagement (e.g., workforce diversity), and tailoring support, but recommend changes to wider operational contexts to ensure such approaches are viable
- …