1,273 research outputs found

    Fuzzy rule based profiling approach for enterprise information seeking and retrieval

    Get PDF
    With the exponential growth of information available on the Internet and various organisational intranets there is a need for profile based information seeking and retrieval (IS&R) systems. These systems should be able to support users with their context-aware information needs. This paper presents a new approach for enterprise IS&R systems using fuzzy logic to develop task, user and document profiles to model user information seeking behaviour. Relevance feedback was captured from real users engaged in IS&R tasks. The feedback was used to develop a linear regression model for predicting document relevancy based on implicit relevance indicators. Fuzzy relevance profiles were created using Term Frequency and Inverse Document Frequency (TF/IDF) analysis for the successful user queries. Fuzzy rule based summarisation was used to integrate the three profiles into a unified index reflecting the semantic weight of the query terms related to the task, user and document. The unified index was used to select the most relevant documents and experts related to the query topic. The overall performance of the system was evaluated based on standard precision and recall metrics which show significant improvements in retrieving relevant documents in response to user queries

    Waveform Design for Maximum Pass-Band Energy

    Get PDF
    One way to maximize the sensitivity of an ultrasonic inspection is by establishing the pulser output voltage waveform to provide the maximum possible fraction of its energy in the pass-band of the piezoelectric transducer. An analytical study is reported that is backed up with experimental verification. Two pulser constraints are analyzed in this study. The first constraint is to study the common and easily generated waveform shapes for which each waveform has unit energy and compare to the optimum waveform shape with unit energy that is determined analytically. The second constraint is to repeat the first analysis with waveforms having unit amplitude rather than unit energy. The analysis for the first constraint shows that the numerically intractable problem of summing a very large number of Fourier coefficients can be replaced by a mathematically equivalent evaluation of the pass-band energy which requires only the integration of smooth functions. This alternative formulation also leads to the result that the optimized waveform is the eigenfunction of a particular integral operator corresponding to the largest eigenvalue. The eigenvalue itself gives the maximum attainable passband energy. The optimized waveform is compared with sine waves, rectangular waves, trapezoidal waves, triangle waves and exponential spikes for 1/2, 1 and 3/2 cycle durations. The analysis for the second constraint shows that the unit amplitude is in the form of an inequality which is outside the realm of the classical calculus of variations. An exact characterization of the optimized waveform was not found but numerical integration techniques were employed to determine the pass-band energies for the waveforms considered under the first constraint. Finally, a breadboard pulser model is constructed and extensive comparisons of the various waveshapes, sensitivity studies, spectral distributions and experimental verification are made for each constraint

    Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    Get PDF
    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference

    Type-2 fuzzy sets applied to multivariable self-organizing fuzzy logic controllers for regulating anesthesia

    Get PDF
    In this paper, novel interval and general type-2 self-organizing fuzzy logic controllers (SOFLCs) are proposed for the automatic control of anesthesia during surgical procedures. The type-2 SOFLC is a hierarchical adaptive fuzzy controller able to generate and modify its rule-base in response to the controller's performance. The type-2 SOFLC uses type-2 fuzzy sets derived from real surgical data capturing patient variability in monitored physiological parameters during anesthetic sedation, which are used to define the footprint of uncertainty (FOU) of the type-2 fuzzy sets. Experimental simulations were carried out to evaluate the performance of the type-2 SOFLCs in their ability to control anesthetic delivery rates for maintaining desired physiological set points for anesthesia (muscle relaxation and blood pressure) under signal and patient noise. Results show that the type-2 SOFLCs can perform well and outperform previous type-1 SOFLC and comparative approaches for anesthesia control producing lower performance errors while using better defined rules in regulating anesthesia set points while handling the control uncertainties. The results are further supported by statistical analysis which also show that zSlices general type-2 SOFLCs are able to outperform interval type-2 SOFLC in terms of their steady state performance

    Sirolimus attenuates disease progression in an orthologous mouse model of human autosomal dominant polycystic kidney disease

    Get PDF
    In autosomal dominant polycystic kidney disease (ADPKD), abnormal proliferation of tubular cells drives cyst development and growth. Sirolimus, an inhibitor of the protein kinase mammalian target of rapamycin (mTOR) and a potent anti-proliferative agent, decreases cyst growth in several genetically distinct rodent models of polycystic kidney disease (PKD). We determined here the effect of sirolimus on renal cyst growth in Pkd2WS25/− mice; an ortholog of human ADPKD involving mutation of the Pkd2 gene. In Pkd2WS25/− mice treated with sirolimus, both the two kidney/total body weight (2K/TBW) ratio and the cyst volume density (CVD) were significantly decreased by over half compared with untreated mice suffering with PKD. However, there was no effect on the increased blood urea nitrogen (BUN) levels as an index of kidney function. There are two distinct complexes containing mTOR depending on its binding partners: mTORC1 and mTORC2. Western blot analysis of whole kidney lysates and immunohistochemistry of the cysts found that phospho-S6 ribosomal protein, a marker of mTORC1 activity, was increased in Pkd2WS25/− mice and its phosphorylation was decreased by sirolimus treatment. Phospho-Akt at serine 473, a marker associated with mTORC2 activity, was not different between Pkd2WS25/− mice and normal littermate controls. Hence, our study found that inhibition of mTORC1 by sirolimus correlated with decreased renal cyst growth in this model of human ADPKD but had no effect on the decline in renal function

    Immunocytochemical localisation of follicle stimulating hormone (FSH) in normal, benign and malignant human prostates.

    Get PDF
    Immunocytochemical localisation of follicle stimulating hormone (FSH) was carried out in normal, benign and malignant human prostates by indirect immunoperoxidase technique. Positive staining was observed in the epithelial cells of all the three categories, while the stromal cells showed a weakly positive reaction in a few specimens. The brown reaction product was dispersed in the cytoplasm of the epithelial cells. These observations demonstrate the presence of immunoreactive FSH-like peptide in human prostate. The significance of FSH in the aetiopathology of prostatic disorders is discussed

    Regulated ion transport in mouse liver cyst epithelial cells

    Get PDF
    AbstractDerived from bile duct epithelia (BDE), secretion by liver cyst-lining epithelia is positioned to drive cyst expansion but the responsible ion flux pathways have not been characterized. Cyst-lining epithelia were isolated and cultured into high resistance monolayers to assess the ion secretory pathways. Electrophysiologic studies showed a marked rate of constitutive transepithelial ion transport, including Cl− secretion and Na+ absorption. Na+ absorption was amiloride-sensitive, suggesting the activation of epithelial sodium channels (ENaC). Further, both cAMPi and extracellular ATP induced robust secretory responses. Western blotting and immunohistologic analysis of liver cyst epithelia demonstrated expression of P2X4, a potent purinergic receptor in normal BDE. Luminometry and bioassaying measured physiologically relevant levels of ATP in a subset of liver cyst fluid samples. Liver cyst epithelia also displayed a significant capacity to degrade extracellular ATP. In conclusion, regulated ion transport pathways are present in liver cyst epithelia and are positioned to direct fluid secretion into the lumen of liver cysts and promote increases in liver cyst expansion and growth
    • …
    corecore