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Abstract— The availability of advanced driver assistance 
systems (ADAS), for safety and well-being, is becoming 
increasingly important to avoid traffic accidents caused by 
fatigue, stress, or distractions. In this sense, automatic 
identification of a driver among a group of various drivers (i.e. 
real-time driver identification) is a key factor in the development 
of ADAS, mainly when driver’s comfort and security is also to be 
taken into account. The main objective of this work is the 
development of embedded electronic systems for in-vehicle 
deployment of driver identification models. We developed a 
hybrid model based on artificial neural networks (ANN), and 
cepstral feature extraction techniques, to recognize the driving 
style of different drivers. Results obtained show that the system 
is able to perform real-time driver identification using 
non-intrusive driving behavior signals such as brake pedal signal 
and gas pedal signal. The identification of a driver within groups 
with reduced number of drivers yields promising identification 
rates (e.g. 3-driver group yield 84.6 %). However, real-time 
development of ADAS requires very fast electronic systems. In 
this sense, an FPGA-based hardware coprocessor for 
acceleration of the neural classifier has been developed. The 
coprocessor core is able to compute the whole ANN in less than 4 
µµµµs. 

I. INTRODUCTION 

NNOVATION in car safety over the last decades has 
undoubtedly contributed to reducing traffic accidents, even 

though the number of cars on roads in the developed countries 
continues to rise. As a consequence of continuous 
technological advances, mainly in the areas of 
microelectronics and communications, new safety systems are 
being developed and incorporated into cars as standard 
equipment [1]-[3]. However, the main source of insecurity in a 
car is the driver himself, and many traffic accidents are wholly 
or partly caused by the driver. The availability of advanced 
driver assistance systems (ADAS), for safety and well-being, 
is becoming increasingly important to avoid traffic accidents 
caused by fatigue, stress, or distractions, especially since the 
driving population is getting older [4]-[5]. In this context the 
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ability to identify a driver and his/her driving behavior is the 
basis of many ADAS. In addition, the recognition of the driver 
could be useful for security purposes (i.e. driver 
authentication) and comfort improvement in smart cars [6]. 

In the last decade there has been an increasing research 
activity concerning driving behavior signals and their 
potential application in the development of ADAS [6]-[9]. 
These signals can be obtained in a non-intrusive manner, 
without disturbing the driver, as opposed to some video/audio 
signals which are the basis of some current ADAS. Driving 
behavior signals, mainly CAN bus signals, and sensor 
recordings (e.g. gas pedal pressure, brake pedal pressure, 
vehicle velocity, etc.) were used to develop models of drivers’ 
behavior with the aim of identifying the driver and the driver’s 
status under different cognitive conditions (e.g. distraction, 
and stress) [10]. The authors obtained satisfactory results by 
means of cepstral analysis and Gaussian mixture models 
(GMM). Cepstral feature extraction and cepstral filtering are 
well known techniques, commonly used in digital processing 
of voice signals, and suitable for efficient hardware 
implementation [11]. On the contrary, GMM are complex 
algorithms, with high computational demands [12]. This kind 
of approaches is unsuitable for in-vehicle embedded solutions 
with restrictive design specifications such as high 
performance, reduced size, and low power consumption. 

To tackle the problem of computational workload of 
statistical models such as GMMs, we investigated the 
suitability of artificial neural networks (ANN), combined with 
cepstral feature extraction techniques, to develop driver 
behavior models. The main aspects that support the proposal 
are the following: 
1) Artificial neural networks have proven useful to model 

complex dynamic systems, in particular, human behavior 
in changing environments [13]. 

2) The learning capabilities of ANNs enable online 
adaptation of the models in demanding long-term 
applications. 

3) The regular and parallel structure of typical ANNs is very 
suitable to develop high-speed hardware computation 
devices [14]. 

 
During the last years, the automotive sector has taken 

advantage of field programmable gate arrays (FPGA), mainly 
due to the high computational demands of this sector where a 
huge amount of signals have to be processed in real time by 
means of very fast electronic systems [15]-[17]. Currently 
FPGAs are used as embedded platforms (i.e. 
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system-on-programmable chip: SoPC) or hardware 
coprocessors for algorithm acceleration, and as sensor 
interfaces (camera sensor interface, infrared or thermal 
camera interface, radar sensor interface, CAN bus interface, 
etc) [18], [19]. The main objective of this work is the 
development of embedded electronic systems for in-vehicle 
deployment of driver identification systems based on cepstral 
analysis and ANNs. 

The paper is organized as follows: Section II presents the 
data base used in this work (i.e. Uyanik corpus), and the main 
characteristics of the selected driving behavior signals. In 
Section III the proposed model is presented, and 
representative simulation results are discussed. Section IV 
addresses the development of the driver identification 
systems, and provides details of their FPGA-based 
implementations. Finally, Section V presents some 
concluding remarks.  

II. DRIVING BEHAVIOR SIGNALS 

The aim of this work is to model individual differences 
among the driving behavior of a group of drivers, and identify 
the driver in real-time by using the developed models. Next, 
the main characteristics of the data collection are introduced 
and the selection of signals, from the whole set of driving 
behavior signals, is justified. 

A. Data Collection 

The driving behavior data collection was supplied by the 
“Drive-Safe Consortium”. It was collected in Istanbul with the 
instrumented car called Uyanik, which is a sedan car equipped 
with different sensors [7]-[8]. The complete data set (84 male 
and 17 female) includes audio and video recordings, CAN-bus 
signals, pedal-sensor recordings, 180º laser range finder, and 
XYZ accelerometer recordings. 

The car route is around 25 km (about 40 minutes), and 
includes different kinds of sections: city, very busy city, 
highway, highway with less traffic, a university campus, etc. 
The route is the same for all drivers, however, the road 
conditions differ depending on traffic and weather. 
Approximately half of the driving sessions include driving 
under specific tasks with the aim of disturbing the attention of 
the drivers: signboard and plate reading, different types of 
dialogs on mobile phone, and conversation with the 
passengers. However, to avoid additional noise sources, these 
driving periods were not considered. 

B. Signal Selection 

Firstly, the most suitable signals to perform driver 
identification in a non-intrusive manner were selected. The 
data collection was analyzed using data mining techniques 
with the aim of categorizing the data, finding similar 
characteristics across a large number of observations, and 
identifying potential useful signals. As a result of this task, and 
some preliminary experiments, two signals were selected: gas 
pedal pressure (GP), and brake pedal pressure (BP). Both 

signals GP and BP are continuously sampled at 32 Hz. 
Illustrative histograms of GP and BP signals, obtained from 

five randomly selected drivers, are shown in Fig. 1. As can be 
seen, each driver has its own driving style. The first driver on 
the top makes little use of the brake pedal. On the contrary, the 
fourth driver presses the brake pedal with much more strength 
(note that a different X-axis scale has been used for this driver 
in Fig. 1). The same consideration applies to the gas pedal. 
Moreover, the particular driving style of driver four is easier 
to identify than the remaining drivers. 
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Fig. 1.  Histograms of the selected driving behavior signals, sampled at 32 Hz 
over 30 minutes, for five randomly selected drivers. The histograms of brake 
pedal pressure are shown on the left side of the figure, while the histograms of 
gas pedal pressure are shown on the right side. It is worth noting that Y-axis 
scale is limited to 2x104 and 5x103 samples for BP and GP, respectively. 

 

III.  DRIVER IDENTIFICATION MODEL 

The driver identification system proposed in this work is 
based on cepstral analysis and ANNs. Firstly, cepstral analysis 
is used to extract the most relevant features of the driving 
behavior signals, and then an ANN classifies the drivers 
according to their driving style. Let us briefly introduce both 
techniques.  

A. Cepstral Analysis 

Cepstral analysis is a nonlinear signal processing technique 
[11]. It was originally designed for characterizing the seismic 
echoes associated with earthquakes. However, at present, the 
most fruitful application area is concerned with digital 



 
 

 

processing of the voice signals (e.g. speech recognition and 
speaker recognition). It has also been used to analyze radar 
signal returns, and to evaluate machinery vibration. Recently, 
encouraging results have been obtained applying Cepstral 
feature extraction to driving behavior signals [10]. 

The real cepstrum for a long-time sequence x(n) is defined 
as 

 

{ }1 log ( ( ))( ) ,xc x nn −= F F  (1) 

 
in which F  denotes the discrete-time Fourier transform 

(DTFT), and 
1−

F  denotes its inverse (IDTFT). Usually, the 
natural or base 10 logarithm is computed, but any base can be 
used. 

An important property of the cepstrum is that the logarithm 
operation transforms the magnitude spectrum of a signal, 
where the components of the signal are generally not 
separable, to a linear combination (sum) of these components. 
The separation is done by taking the IDFT of the linearly 
combined logarithm spectra (e.g. separation of excitation and 
vocal tract system in speech signals, or separation of a low 
frequency signal from high-frequency noise). The IDFT of 
linear spectra transforms back to the time domain, but the 
IDFT of logarithm spectra transforms to the so called 
quefrency domain or the cepstral domain. 

In the case of practical signal processing applications, short 
terms or frames of the signals have to be used [20]. To select a 
desired frame of the original signal x(n), the signal is 
multiplied by a finite length window w(n). Commonly used 
window sequences are smooth bell-shaped functions, 
symmetric about the time (T-1)/2, where T is the duration of 
the frame (e.g. Hamming window). This kind of window is 
useful to reduce the edge effects due to data segmentation 
[20]. 
 

B. Data preprocessing 

The selected signals, gas pedal pressure (GP) and brake 
pedal pressure (BP), were sampled at 32 Hz and subdivided 
into frames of T=2s duration (64 samples). The overlapping 
between consecutive windows  is of 60 samples. That is to say, 
a new frame begins every 125 ms (i.e. 4-sample frame shift). 
For each frame k the short term real cepstrum is evaluated, and 
K cepstral features fk are extracted as follows 
 

{ }{ }1

2log ( ))(BPF ,k wx n kTf −= +F F  (2) 

 
where xw(n + kT) is the frame signal multiplied by the window 
function. The fast Fourier transform (FFT) was used to 
compute the DTFT and its inverse, and finite impulse 
response (FIR) filters were developed to perform high 
frequency noise filtering. The band-pass filter (BPF) separates 
noise from driving behavior signals. Two BPFs, with different 
cutoff frequencies, were implemented for BP and GP signals, 

respectively. As suggested in [10], 1-13 Hz cutoff frequencies 
were selected for BP signal, while 1-6.5 Hz frequencies were 
used for GP signal. Moreover, base 2 logarithm was used to 
simplify further hardware implementation; this base is more 
suitable for efficient digital hardware implementation. 

C. Neural Classifier 

The kernel of the driver identification system is a 
multi-layer perceptron (MLP). Concerning the topology 
selection, a four-layer interconnected network (i.e. two hidden 
layers) has been devised (see Fig. 4). The size of the input 
layer is equal to the product of the number of driving behavior 
signals S, and the number of cepstral features K. The size of 
the hidden layers (i.e. number of hidden neurons) is a critical 
design parameter as it has a great impact on the modeling 
capability of the neural network. It is well known that too few 
hidden neurons provide poor performances, while an excess 
of hidden neurons could weaken the generalization capability 
of the network. Moreover, since our goal is to develop a 
single-chip hardware solution, too complex architectures 
should be avoided. 

The best trade-off between complexity and performance 
was obtained with the same number of hidden neurons per 
layer as the inputs. Finally, the output layer has d neurons, 
where d is the number of drivers in the group. For example, 
the topology of a neural classifier based on two driving 
behavior signals (S=2), using 10 cepstral features (K=10) for a 
3-driver group (d=3) is: 20-20-20-3. The driver of the group 
identified by the MLP is that associated with the neuron in the 
output layer which achieves the maximum activation. 

D. Experimental results 

The proposed neural classifier was tested using the Uyanik 
data set. A preprocessing stage based on cepstral feature 
extraction, like the one described in Subsection B, was 
included. The ANN was trained for groups of three, four, and 
five drivers, as these are typical number of drivers in real-life 
situations (e.g. family cars used by various drivers, or fleet of 
vehicle with frequent driver reassignment). This task was 
accomplished by means of the back-propagation gradient 
descent method (GDM), while the mean squared error (MSE) 
was selected as the error function. The 30% of available data 
were used in the learning phase for training and validation (i.e. 
approximately 8 minutes data), while the remaining 70% were 
used for testing purpose (driver recognition). Three randomly 
selected set of data were used in each case, and the mean ratio 
of success percentage was computed. 

For the cepstral feature extraction stage the number of 
features was set to K=10 as no additional improvement of the 
classifier was observed by increasing the number of features. 
The MSE was used to evaluate the training performance of the 
ANNs, and the percentage of successful driver identification 
was used to check the performance of the models. As can be 
seen in Table I, the fusion of GP and BP provides the best 
training performance. 
 



 
 

 

TABLE I.  TRAINING PERFORMANCE: AVERAGE MSE 

Driving 
behavior 
signals 

3 drivers 4 drivers 5 drivers 

Gas pedal 
(GP) 

0.162 0.144 0.105 

Brake pedal 
signal (BP) 

0.105 0.097 0.082 

BP + GP 
signals 

0.071 0.072 0.072 

 
 
Figure 2 shows the average driver identification rates for 

the three groups of drivers using single signal models (S=1) 
for GP and BP, and 2-signal models (S=2), for the fusion of 
GP and BP. For the case of single signal models, BP is able to 
provide 75% of success among three drivers, while GP 
achieves only 61% for the same group. The fusion of both GP 
and BP signals provides the best result, 84% of success. The 
results obtained with the fusion of GP and BP are similar to 
those obtained in [10] by means of a more complex statistical 
model (i.e. Gaussian mixture model) using the same data set. 
However, in the case of single signals, GMM shields slightly 
better results, mainly for the gas pedal signal. 
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Fig. 2.  Comparison of driver identification rates obtained with driving 
behavior signals (GP: gas pedal pressure, and BP: brake pedal pressure) 
using the developed model for different number of drivers. 

 

IV. IMPLEMENTATION OF THE DRIVER IDENTIFICATION 

SYSTEM 

An embedded system is a special-purpose computing 
platform designed to perform one or several dedicated 
functions. They are often designed for a particular kind of 
activity that is required to work under certain constraints, such 

as low power consumption, real-time operation, processing 
capacity, dependability, security, etc. In addition, low cost, 
and small size/weight are also typical requirements for these 
computing platforms. In the progress towards a more 
autonomous and flexible lifestyle, with new levels of comfort, 
safety and productivity in all areas, many embedded platforms 
have emerged in the market and are in use in our daily 
activities. They can be found everywhere in a variety of 
application areas, from control systems in automotive sectors, 
to consumer and multimedia products, among others. 

Field programmable gate arrays (FPGAs) has appeared as a 
suitable means for the development of embedded systems 
[21]. A milestone in the evolution of reconfigurable hardware 
has been to combine the logic blocks and interconnections of 
traditional FPGAs (logic fabric) with embedded 
microprocessors (e.g. standard PowerPC or ARM) and related 
peripherals to form a system-on-programmable chip (SoPC) 
or a multiprocessor SoPC (MSoPC). A similar approach 
consists in using soft-processor cores instead of hard-cores 
that are implemented within the FPGA logic such as for 
example Xilins’s MicroBlaze [22]. 

The development of efficient SoPC-based embedded 
systems involves the use of hardware/software (HW/SW) 
co-design techniques. HW/SW co-design proposes the 
partition of the computation algorithms into HW and SW 
blocks by searching for the partition that optimizes the 
performance parameters of the whole system. This approach 
provides an optimal solution for many systems where a 
trade-off between versatility and performance is required, as 
for example, many applications in the ever competitive 
automotive sector. In this context, the implementation of 
efficient real-time electronic systems for ADAS, using 
FPGA-based embedded systems for in-vehicle integration, is 
an issue of great interest. Next, a detailed scheme of the 
proposed HW/SW architecture is presented. 

The FPGA selected to implement the driver identification 
core is the XC7k325T device of Xilinx’s KINTEX-7 family 
[23]. The device is one of the smallest of this family. It has 
50950 Slices (each Slice contains four 6-input look-up table 
(LUTs), and eight flip-flops), 840 digital signal processing 
(DSP) blocks (each DSP consists of a multiplier, an adder, and 
an accumulator), and 445 RAM memory blocks of 36 Kbits 
each. 

Hardware/Software partition 

The driver identification system architecture was designed 
to enable automatic identification of a driver, among a group 
of various drivers, by recognizing his/her driving style. The 
system has been partitioned into three main modules: the 
input/output (I/O) management, the computation of the 
cepstral features (2), and the evaluation of the four-layer MLP 
(feed-forward network). In the proposed architecture (see Fig. 
3) the first two modules are included in the software partition, 
while the latter one is developed in the hardware partition. 
Although the sequential computation of the MLP is a time 



 
 

 

consuming task, it exhibits a regular and highly parallelizable 
structure, so it is suitable to be located in the HW partition. On 
the other hand, the feature extraction preprocessing algorithm 
is not so critical because it is computed only for the selected 
signals (S=1 or S=2). However, in future works we are going 
to develop special purpose hardware to accelerate the cepstral 
feature extraction stage. As has been explained in Section III, 
cepstral analysis involves the computation of typical digital 
signal processing algorithms which can be efficiently 
implemented on FPGA devices. 

A. Neural Classifier 

The neural classifier, implemented in the hardware 
partition, computes an f-input d-output feed-forward network 
with two hidden layers (i.e. a four-layer MLP), being f=SxK. 
This coprocessor communicates with the microprocessor by 
means of a Fast Simplex Link (FSL) Bus (see Fig. 3). It is a 
VHDL module that can be sized in several dimensions by 
means of GENERIC parameters (i.e. word-length, number of 
inputs, number of outputs, and number of neurons). The 
coprocessor architecture exploits the high degree of 
parallelism inherent to neural networks. It is optimized for 
high-speed processing and is able to provide real-time 
response for advanced driving assistance systems. 

Fig. 4 depicts a block diagram of the coprocessor core. The 
main modules of the core are the Input Layer, the Hidden 
Layers, the Output Layer, the RAM module where the neuron 
weights and biases are stored, and the Core Controller. The 
MLP was previously trained (off-line training) as has been 
explained in previous sections. In real-time operation mode, 
the Input Layer reads the inputs provided by the FSL bus and 
pushes them into the parallel data path. Then, the Hidden 

Layers perform the computation of all hidden neurons in 
parallel. Finally, the Output Layer (which is similar to the 
Hidden Layers) includes as many neurons as possible drivers, 
as well as a multiplexer (MUX) that sequences the transfer of 
the core outputs to the MicroBlaze by means of the FSL bus. 
The Core Controller is a simple finite state machine (FSM) 
responsible for the data pipelining through the data path. 
 

 
Fig. 4.  Internal architecture of the neural classifier. 

Output 
Layer 

Input 
Layer 

From 
FSL 

CLK 

Reset 

32 

Hidden 
Layer 1 

Hidden 
Layer 2 

32 

Circuit 
Controller 

(FSM) 

To 
FSL 

RAM memory block 
 

weights 
and 

biases 

MicroBlaze 
Processor 

System 
controller 

CAN Bus 

I/O 
Peripheral

s 

GPIO 

UART 

Local Memory 

- I/O processing 
- Cepstral feature 
extraction 
 

PLB 

Fig. 3.  Block diagram of the proposed hardware/software architecture for efficient implementation of the driver identification 
system. The software partition is developed on a MicroBlaze processor, while the neural classifier is implemented in the 
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B. Hidden Layers 

The Hidden Layers are organized into h parallel neurons. 
Each neuron in these layers computes the sum of as many 
products (SOPs) as neural network inputs (f) (see Fig. 5). 
Then, the SOPs are passed through a high-precision sigmoid 
filter. When the neuron is enabled, the adder accumulator is 
initialized with the neuron bias, then, a burst of h products (i.e. 
inputs and weights) are sequentially added. The computation 
of the SOPs lasts (f+1) clock cycles. After the computation of 
SOPs (i.e. the linear part of the neuron), the sigmoid filter is 
activated. 

The Output Layer is similar to the Hidden Layer. The 
number of output neurons is equal to the number of possible 
drivers, d, while the computation time is (d+1) clock cycles. 

 

 
Fig. 5.  Schematic of the linear part of a hidden/output neuron (sum of 
products, SOP module). 

C. Sigmoid Module 

As can be seen in Fig. 6, the input to the sigmoid Filter is the 
result of the computation of the linear part of the neuron 
(SOP). This module is based on a controlled accuracy 
approximation of the sigmoid function [24], [25]. It 
implements the sigmoid function with a maximum 
approximation error ε =6x10-4, using a second order Taylor’s 
approximation scheme. 

The main computation unit of the sigmoid module is a 
typical DSP core. These embedded blocks, available in most 
current FPGA families, provide high-performance with 
low-power consumption. Two read only memory (ROM) 
modules are used to store the Taylor’s coefficients, ROM1 
and ROM2. Both memories are addressed by means of the 
most significant bits of the SOP. The circuit performs the 
computation of the sigmoid approximation in only 5 clock 
cycles. 

D. Timing Considerations and Resources Utilization 

Table II presents post place and route timing results for 
different MLP topologies. As can be seen, a 10 feature 
classifier (i.e. only one driving behavior signal, BP or GP) is 
able to perform the network computation in less than 2 µs (e.g. 
a 3-driver classifier requires 1.4 µs, while a 5-driver classifier 
needs 1.64 µs). Concerning the topology that achieves the best 
recognition rates (i.e. two driving behavior signal, BP and 
GP), the 20 feature core requires only 3.70 µs to evaluate a 

3-driver classifier, 4.07 µs to evaluate a 4-driver classifier, 
and a similar result, 3.94 µs to compute a 5-driver topology. 
This performance allows true real-time driver identification. 
On the contrary, an embedded system based on a whole 
software implementation of the MLP would have increased 
the computation time several magnitude orders. 
 

 
Fig. 6.  Schematic of the Sigmoid circuit. It is based on a second order Taylor 
approximation of the function. 

 
As can be seen in Table II, the maximum computation 

frequency is greater than 100 MHz when only 10 cepstral 
features are used (i.e. one driving behavior signal), but slightly 
less than 100 MHz when a to 20 feature topology is required. 
This performance could be improved by using distributed 
RAM memories instead of a single RAM module to store 
weights and biases of the whole ANN. Each neuron would 
have its own storage module with the aim of making the neural 
architecture more flexible, and reducing signal delays. 

TABLE II.  TIMING PERFORMANCE 

Topology of the 
MLP 

(2 hidden layers) 

Achieved 
frequency (MHz) 

Computation time 
(µµµµs) 

10-10-10-3 126 1.40 

20-20-20-3 91 3.70 

10-10-10-4  121 1.50 

20-20-20-4 84 4.07 

10-10-10-5 114 1.64 

20-20-20-5 88 3.94 

 
Concerning resource utilization, Table III summarizes the 

implementation requirements of different MLP topologies. 
The most representative FPGA primitives have been 
considered (i.e. LUTs, registers or flip-flops, and DSP 
modules). As can be seen, the percentage of resource 
utilization, in average, is less than 7% of total resources in the 
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Xilinx’s KINTEX-7 device used in this work -it is the third in 
size of this family. Therefore, it can be concluded that the 
resource demands of the classifier core is small enough to 
allow full implementation of more complex topologies. In 
addition, the remaining resources, 93 % of the device, could 
be dedicated to add new algorithms and strategies for 
real-time ADAS implementation. Alternatively, a smaller 
device of this family could be selected with the aim of 
reducing cost, size, and power consumption of the neural 
classifier. 

 

TABLE III.  RESOURCE UTILIZATION 

Topology of the 
MLP 

(2 hidden layers) 
LUTs Flip-flops 

DSP 
Blocks 

Mean 
resource 

utilization 

10-10-10-3 3896 6468 24 2.2 % 

20-20-20-3 17623 20834 44 6.4 % 

10-10-10-4  4045 6779 25 2.3 % 

20-20-20-4 19558 21292 45 6.8 % 

10-10-10-5 4373 7044 26 2.4 % 

20-20-20-5 21555 21765 46 7.2 % 

 

V. CONCLUSION 

The availability of advanced driver assistance systems 
(ADAS), for safety and well-being, is becoming increasingly 
important to avoid traffic accidents caused by fatigue, stress, 
distractions or chronic diseases. This work contributes to the 
development of ADAS with a driver-centred perspective 
which aims at improving the driver’s awareness and driving 
performance in a personalized way. 

A new approach to the problem of real-time driver 
identification is presented. The proposed solution is based on 
artificial neural networks and cepstral analysis. Obtained 
results show that the model is able to recognize different 
driving styles using non-intrusive driving behavior signals 
(gas pedal signal and brake pedal signal). The driver is then 
identified through his/her driving style. 

Real-time development of ADAS requires very fast 
electronic systems. To fulfill this requirement, an 
FPGA-based hardware coprocessor for acceleration of the 
neural classifier has been developed. The coprocessor core is 
able to compute the whole ANN in less than 4 µs. In addition, 
the resource demand is small enough to allow full 
implementation of more complex topologies. 

In future works we are going to improve the identification 
performance of the neural classifier by adding new driving 
behavioral signals. In this sense, we will investigate the fusion 
of two additional CAN bus signals, the vehicle speed and the 
engine revolutions per minute. In addition, the performance of 
the FPGA-based system will be improved in order to enable 
on-line training. This new capability of the the system would 

allow the adaptation of the reference driving style models in 
long term. 
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