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A Real-Time Driver Identification System based on Atificial Neural
Networks and Cepstral Analysis

Inés del Campo, Raul Finker, M2 Victoria

Abstract— The availability of advanced driver assistance
systems (ADAS), for safety and well-being, is becang
increasingly important to avoid traffic accidents @used by
fatigue, stress, or distractions. In this sense, #&matic
identification of a driver among a group of variousdrivers (i.e.
real-time driver identification) is a key factor in the development
of ADAS, mainly when driver's comfort and securityis also to be
taken into account. The main objective of this workis the
development of embedded electronic systems for irelicle
deployment of driver identification models. We deviped a
hybrid model based on artificial neural networks (ANN), and
cepstral feature extraction techniques, to recognethe driving
style of different drivers. Results obtained show that the system
is able to perform real-time driver identification using
non-intrusive driving behavior signals such as brak pedal signal
and gas pedal signal. The identification of a drivewithin groups
with reduced number of drivers yields promising idetification
rates (e.g. 3-driver group yield 84.6 %). Howeverreal-time
development of ADAS requires very fast electronicystems. In
this sense, an FPGA-based hardware coprocessor for
acceleration of the neural classifier has been deeped. The
coprocessor core is able to compute the whole ANN liess than 4

us.

. INTRODUCTION

Martingayier Echanobe, and Faiyaz Doctor

ability to identify a driver and his/her driving levior is the
basis of many ADAS. In addition, the recognitiorlu# driver
could be useful for security purposes (i.e. driver
authentication) and comfort improvement in smars ¢@].

In the last decade there has been an increasiegroks
activity concerning driving behavior signals andeith
potential application in the development of ADAS-[€].
These signals can be obtained in a non-intrusivanera
without disturbing the driver, as opposed to soidea/audio
signals which are the basis of some current ADABvibBY
behavior signals, mainly CAN bus signals, and senso
recordings (e.g. gas pedal pressure, brake pe@akyme,
vehicle velocity, etc.) were used to develop modébtivers’
behavior with the aim of identifying the driver atie driver’s
status under different cognitive conditions (e.gptrection,
and stress) [10]. The authors obtained satisfactsylts by
means of cepstral analysis and Gaussian mixtureelsod
(GMM). Cepstral feature extraction and cepstraéfihg are
well known techniques, commonly used in digitalqgassing
of voice signals, and suitable for efficient hardsva
implementation [11]. On the contrary, GMM are coexpl
algorithms, with high computational demands [12jisTkind

I NNOVATION in car safety over the last decades ha@f approaches is unsuitable for in-vehicle embedubdations

undoubtedly contributed to reducing traffic accidereven

with restrictive design specifications such as high

though the number of cars on roads in the developadtries performance, reduced size, and low power consumptio
continues to rise. As a consequence of continuousTo tackle the problem of computational workload of
technological advances, mainly in the areas gtatistical models such as GMMs, we investigated th
microelectronics and communications, new safetiesys are  Suitability of artificial neural networks (ANN), eabined with
being developed and incorporated into cars as atend cepstral feature extraction techniques, to devedoper
equipment [1]-[3]. However, the main source of mgity ina  behavior models. The main aspects that supporpribgosal

car is the driver himself, and many traffic accitesre wholly
or partly caused by the driver. The availabilityasfvanced
driver assistance systems (ADAS), for safety anli-lvegng,

is becoming increasingly important to avoid trafficcidents
caused by fatigue, stress, or distractions, esihesiace the
driving population is getting older [4]-[5]. In thicontext the
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are the following:

1) Artificial neural networks have proven useful to debd
complex dynamic systems, in particular, human bienav

in changing environments [13].

The learning capabilities of ANNs enable online
adaptation of the models in demanding long-term
applications.

The regular and parallel structure of typical ANBIsery
suitable to develop high-speed hardware computation
devices [14].

2)

3)

During the last years, the automotive sector h&snta
advantage of field programmable gate arrays (FP@ajnly
due to the high computational demands of this sedbere a
huge amount of signals have to be processed irtirealby
means of very fast electronic systems [15]-[17]rr€utly

FPGAs are used as embedded platforms (i.e.



system-on-programmable  chip: SoPC) or
coprocessors for algorithm acceleration, and assaen
interfaces (camera sensor interface, infrared @rnthl
camera interface, radar sensor interface, CAN bigsface,
etc) [18], [19]. The main objective of this work the
development of embedded electronic systems forehiele
deployment of driver identification systems basactepstral
analysis and ANNSs.

The paper is organized as follows: Section Il pnes¢he
data base used in this work (i.e. Uyanik corpus), the main
characteristics of the selected driving behaviginais. In
Section 1l the proposed model is presented,
representative simulation results are discussedtiddelV
addresses the development of the driver identifinat
systems, and provides details of their
implementations. Finally, Section
concluding remarks.

The aim of this work is to model individual differees
among the driving behavior of a group of drivers] &entify
the driver in real-time by using the developed nieddext,
the main characteristics of the data collectioniat®duced
and the selection of signals, from the whole setidfing
behavior signals, is justified.

DRIVING BEHAVIOR SIGNALS

A. Data Collection

The driving behavior data collection was suppligdtie
“Drive-Safe Consortium”. It was collected in Istahkwvith the

instrumented car callddyanik which is a sedan car equipped

with different sensors [7]-[8]. The complete dagh (@4 male
and 17 female) includes audio and video recordi@gdy-bus
signals, pedal-sensor recordings, 180° laser rfinder, and
XYZ accelerometer recordings.

The car route is around 25 km (about 40 minutes), a
includes different kinds of sections: city, veryshucity,
highway, highway with less traffic, a universityngpus, etc.
The route is the same for all drivers, however, tbad
conditions differ depending on
Approximately half of the driving sessions includgving
under specific tasks with the aim of disturbing #itéention of
the drivers: signboard and plate reading, diffetgpes of

dialogs on mobile phone, and conversation with the

passengers. However, to avoid additional noisecgsiithese
driving periods were not considered.

B. Signal Selection

Firstly, the most suitable signals to perform drive

identification in a non-intrusive manner were stddc The
data collection was analyzed using data mining rtiegles
with the aim of categorizing the data, finding dani
characteristics across a large number of obsenstiand
identifying potential useful signals. As a resiilttos task, and
some preliminary experiments, two signals werecsete gas
pedal pressure (GP), and brake pedal pressure @BRi).

and

FPGA-based
VV presents some

traffic and weather,

hardwarggnals GP and BP are continuously sampled at 32 Hz

lllustrative histograms of GP and BP signals, ai®difrom
five randomly selected drivers, are shown in Figdd.can be
seen, each driver has its own driving style. That firiver on
the top makes little use of the brake pedal. Orctimgrary, the
fourth driver presses the brake pedal with muchenstrength
(note that a different X-axis scale has been usethfs driver
in Fig. 1). The same consideration applies to the gedal.
Moreover, the particular driving style of driverufois easier
to identify than the remaining drivers.
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Fig. 1. Histograms of the selected driving behasignals, sampled at 32 Hz
over 30 minutes, for five randomly selected driv@ise histograms of brake
pedal pressure are shown on the left side of ¢hedj while the histograms of
gas pedal pressure are shown on the right sidewtbrth noting that Y-axis
scale is limited to 2x10and 5x16 samples for BP and GP, respectively.

The driver identification system proposed in thisrkvis
based on cepstral analysis and ANNSs. Firstly, capahalysis
is used to extract the most relevant features efdtiving
behavior signals, and then an ANN classifies theeds
according to their driving style. Let us brieflytioduce both
techniques.

DRIVER IDENTIFICATION MODEL

A. Cepstral Analysis

Cepstral analysis is a nonlinear signal procedsicgnique
[11]. It was originally designed for characterizithg seismic
echoes associated with earthquakes. However, s¢mehe
most fruitful application area is concerned withgitdl



processing of the voice signals (e.g. speech rétogrand
speaker recognition). It has also been used toyamabdar
signal returns, and to evaluate machinery vibratiRecently,
encouraging results have been obtained applyingst@ep
feature extraction to driving behavior signals [10]

The realcepstrumfor a long-time sequenoén) is defined
as

c,(n) =7 *{log|Z (x(n)[}, @)

respectively. As suggested in [10], 1-13 Hz cubaf§uencies
were selected for BP signal, while 1-6.5 Hz freques were
used for GP signal. Moreover, base 2 logarithm wgesd to
simplify further hardware implementation; this basenore
suitable for efficient digital hardware implemeintat

C. Neural Classifier

The kernel of the driver identification system is a
multi-layer perceptron (MLP). Concerning the tomplo
selection, a four-layer interconnected network {in® hidden
layers) has been devised (see Fig. 4). The sizheoinput

in which Z* denotes the discrete-time Fourier transformayer is equal to the product of the number ofidgwbehavior
(DTFT), andZ " denotes its inverse (IDTFT). Usually, theSignalsS, and the number of cepstral featukesThe size of

natural or base 10 logarithm is computed, but aselzan be
used.

An important property of the cepstrum is that thgalrithm
operation transforms the magnitude spectrum ofgaadi

where the components of the signal are generally ng

separable, to a linear combination (sum) of theseponents.
The separation is done by taking the IDFT of thmedirly

combined logarithm spectra (e.g. separation oftatich and
vocal tract system in speech signals, or separatica low

frequency signal from high-frequency noise). Thd-TDof

linear spectra transforms back to the time domibir, the

IDFT of logarithm spectra transforms to the so ezll
guefrencydomain or theepstraldomain.

In the case of practical signal processing apptioat short
terms or frames of the signals have to be used J20}elect a
desired frame of the original signa(n), the signal is
multiplied by a finite length windowv(n). Commonly used

the hidden layers (i.e. number of hidden neuramns) gritical
design parameter as it has a great impact on thieling
capability of the neural network. It is well knowrat too few
hidden neurons provide poor performances, whilexess
f hidden neurons could weaken the generalizatiqalility
of the network. Moreover, since our goal is to depea
single-chip hardware solution, too complex architezs
should be avoided.

The best trade-off between complexity and perfoigean
was obtained with the same number of hidden neupens
layer as the inputs. Finally, the output layer daseurons,
whered is the number of drivers in the group. For example
the topology of a neural classifier based on twivinly
behavior signals32), using 10 cepstral featurds<10) for a
3-driver group ¢=3) is: 20-20-20-3. The driver of the group
identified by the MLP is that associated with tleeiron in the
output layer which achieves the maximum activation.

window sequences are smooth bell-shaped functionsp. Experimental results

symmetric about the timé{1)/2, whereT is the duration of
the frame (e.g. Hamming window). This kind of wimdds

useful to reduce the edge effects due to data segtion

[20].

B. Data preprocessing

The selected signals, gas pedal pressure (GP) rake
pedal pressure (BP), were sampled at 32 Hz andsdéd

into frames ofT=2s duration (64 samples). The overlappin

between consecutive windows is of 60 samples. iEhatsay,
a new frame begins every 125 ms (i.e. 4-sampledtrsinift).

For each framk the short term real cepstrum is evaluated, arft

K cepstral featurefgare extracted as follows

f, =7 {BPHlog, |7 (x,(n+ kT)}} , 2)

The proposed neural classifier was tested usingytamik
data set. A preprocessing stage based on cepsttlré
extraction, like the one described in SubsectBnwas
included. The ANN was trained for groups of thrieeyr, and
five drivers, as these are typical number of deviarreal-life
situations (e.g. family cars used by various dsyer fleet of

p Vehicle with frequent driver reassignment). Thisktavas

accomplished by means of the back-propagation gmnadi

éiescent method (GDM), while the mean squared ¢M&E)

was selected as the error function. The 30% ofl@vai data
were used in the learning phase for training atidation (i.e.
proximately 8 minutes data), while the remainifgbo were
used for testing purpose (driver recognition). Ehrandomly
selected set of data were used in each case, anaetin ratio
of success percentage was computed.

For the cepstral feature extraction stage the nurobbe
features was set =10 as no additional improvement of the

wherex,(n + KT) is the frame signal multiplied by the windowclassifier was observed by increasing the numbdeaifires.

function. The fast Fourier transform (FFT) was uged

The MSE was used to evaluate the training perfocmaifthe

compute the DTFT and its inverse, and finite impulsANNs, and the percentage of successful driver ifieation
response (FIR) filters were developed to performghhi was used to check the performance of the modelsaAde

frequency noise filtering. The band-pass filter B3Beparates
noise from driving behavior signals. Two BPFs, vditfierent
cutoff frequencies, were implemented for BP andsigials,

seen in Table I, the fusion of GP and BP provides liest
training performance.



TABLE . TRAINING PERFORMANCE AVERAGE MSE as low power consumption, real-time operation, pssing

Driving capacity, dependability, security, etc. In addititow cost,
b;gi‘gjzr 3 arivers Adrivers | Sarivers and small size/weight are also typical requiremémtshese
Gas pedal 0.162 0.144 0.105 computing platform§. In. the progress towards a more
(GP) i i ) autonomous and flexible lifestyle, with new levetsomfort,
3;"; E’Beg;"' 0.105 0.097 0.082 safety and productivity in all areas, many embeduatiorms
BP + GP have emerged in the market and are in use in oiy da
signals 0.071 0.072 0.072 activities. They can be found everywhere in a \grief

application areas, from control systems in automaogiectors,
to consumer and multimedia products, among others.
Figure 2 shows the average driver identificatioi@seor Field programmable gate arrays (FPGASs) has appaarad

the three groups of drivers using single signal e®@-=1) suitable means for the development of embeddedragst
for GP and BP, and 2-signal mode®&2), for the fusion of [21]. A milestone in the evolution of reconfiguralilardware
GP and BP. For the case of single signal modelssBbBle to has been to combine the logic blocks and interociiores of
provide 75% of success among three drivers, while Graditional FPGAs (logic fabric) with embedded
achieves only 61% for the same group. The fusidvotti GP  microprocessors (e.g. standard PowerPC or ARM)alated
and BP signals provides the best result, 84% ofess: The peripherals to form a system-on-programmable c8ipPC)
results obtained with the fusion of GP and BP arélar to or a multiprocessor SoPC (MSoPC). A similar apphoac
those obtained in [10] by means of a more compiiatistical consists in using soft-processor cores insteadaod-hores
model (i.e. Gaussian mixture model) using the sdate set. that are implemented within the FPGA logic suchfas
However, in the case of single signals, GMM shialightly example Xilins’s MicroBlaze [22].
better results, mainly for the gas pedal signal. The development of efficient SoPC-based embedded

systems involves the use of hardware/software (HMJ/S

90 ! co-design techniques. HW/SW co-design proposes the
= S partition of the computation algorithms into HW asV
80 I GP+BP signals| blocks by searching for the partition that optinsizthe
— performance parameters of the whole system. Tipsoagh
R provides an optimal solution for many systems whare
trade-off between versatility and performance gpuied, as
for example, many applications in the ever competit
automotive sector. In this context, the implemeatatof
efficient real-time electronic systems for ADAS, ings
FPGA-based embedded systems for in-vehicle integrat
an issue of great interest. Next, a detailed schemihe
proposed HW/SW architecture is presented.
The FPGA selected to implement the driver iderstfimn

1 core is the XC7k325T device of Xilinx’s KINTEX-7 figly
[23]. The device is one of the smallest of this ifarit has
. 50950 Slices (each Slice contains four 6-input fopktable
(LUTs), and eight flip-flops), 840 digital signatqressing
(DSP) blocks (each DSP consists of a multiplieadaer, and
an accumulator), and 445 RAM memory blocks of 36t¥&b
each.

501 |

401

301

Percentage of identification rates

201

10+

3 drivers 4 drivers 5 drivers .
Hardware/Software partition

Fig. 2. Comparison of driver identification ratebtained with driving The driver identification system architecture wasigned
behavior signals (GP: gas pedal pressure, and BRelpedal pressure) t bl t tic identificati f a dri
using the developed model for different numberrofeds. 0 ena_‘ eau _Oma IC iaenti 'Ca_l(_)n 0 _a nver'_ mm group
of various drivers, by recognizing his/her drivistyle. The
system has been partitioned into three main modukes
IV. IMPLEMENTATION OF THE DRIVER IDENTIFICATION input/output (I/0) management, the computation bé t
SYSTEM cepstral features (2), and the evaluation of thie-fayer MLP

An embedded system is a special-purpose computirgf ed-forward network). In the proposed architeziigee Fig.

platform designed to perform one or several deelttat3 ?he first two mOdUI?S are includeq in the solmplart_it.ion,
functions. They are often designed for a partickiad of while the latter one is developed in the hardwaaditon.

activity that is required to work under certain swaints, such Although the sequential computation of the MLP itirae
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Fig. 3. Block diagram of the proposed hardwaréfgmte architecture for efficient implementationtioé driver identification
system. The software partition is developed on artBlaze processor, while the neural classifiemiplemented in the
hardware partition with the aim of accelerate teéak data processing of the most time consumirig tas

consuming task, it exhibits a regular and highlsefielizable Layers perform the computation of all hidden nesrdém
structure, so it is suitable to be located in thg plartition. On  parallel. Finally, the Output Layer (which is siarilto the
the other hand, the feature extraction preprocgsdgorithm Hidden Layers) includes as many neurons as posilvers,
is not so critical because it is computed onlytfe selected as well as a multiplexer (MUX) that sequences taedfer of
signals 6=1 or S=2). However, in future works we are goingthe core outputs to the MicroBlaze by means o8k bus.
to develop special purpose hardware to acceldrategpstral The Core Controller is a simple finite state maeh{rSM)
feature extraction stage. As has been explain&gation Ill, responsible for the data pipelining through theaqsdtth.
cepstral analysis involves the computation of tgpidigital
signal processing algorithms which can be effidjent
implemented on FPGA devices.

A. Neural Classifier RAM memory block
The neural classifier, implemented in the hardware weights
partition, computes afinput d-output feed-forward network pet
with two hidden layers (i.e. a four-layer MLP), bgif=SxK. t ¢
This coprocessor communicates with the micropracelyg :
means of a Fast Simplex Link (FSL) Bus (see Figlt3} a N oy
VHDL module that can be sized in several dimensions ra ol
means of GENERIC parameters (i.e. word-length, rermolh ;:AO* ;}O* Layer
inputs, number of outputs, and number of neurom$le @* ~ ~

. . ) N To
coprocessor architecture exploits the high degrde 0gom j()+ FSL

R R
A
parallelism inherent to neural networks. It is optied for FSL ©+ "';O* - ;;O*"

high-speed processing and is able to provide nea-t > iag

response for advanced driving assistance systems. 32 - 32
Fig. 4 depicts a block diagram of the coprocessoe.cThe *O* ;O$

main modules of the core are the Input Layer, thddéh ﬁ‘o$ ;R‘O$

Layers, the Output Layer, the RAM module wherertgron  pege ~ ~ t

weights and biases are stored, and the Core Clamtrdohe —> y y coreut

MLP was previously trained (off-line training) aashbeen %> (FSM)

explained in previous sections. In real-time operamode,
the Input Layer reads the inputs provided by the B& and _ o
pushes them into the parallel data path. Then,Hidelen Fi9- 4- Internal architecture of the neural claesi




B. Hidden Layers

The Hidden Layers are organized ititgarallel neurons.
Each neuron in these layers computes the sum oficaxy
products (SOPs) as neural network inpd}s(g¢ee Fig. 5).

3-driver classifier, 4.07s to evaluate a 4-driver classifier,
and a similar result, 3.94s to compute a 5-driver topology.
This performance allows true real-time driver idfécdtion.

Then, the SOPs are passed through a high-precgiomid
filter. When the neuron is enabled, the adder actator is
initialized with the neuron bias, then, a burshpfoducts (i.e.
inputs and weights) are sequentially added. Thepctetion
of the SOPs last$K1) clock cycles. After the computation of
SOPs (i.e. the linear part of the neuron), the sigrfilter is

activated.

The Output Layer is similar to the Hidden Layer.eTh
number of output neurons is equal to the numbgrostible
drivers,d, while the computation time isl{1) clock cycles.

From
SOP
modules

ROM2

Taylor

F"—

On the contrary, an embedded system based on a whol
software implementation of the MLP would have irsed
the computation time several magnitude orders.

»

- + >
Neuron
output
>
Bias ROM1 >
To
Sigmoid Taylor
Weights ——p X filter
Input > o E —»
Data | v
CLK
E —» | >
CLK —» ‘ . . . S
P Fig. 6. Schematic of the Sigmoid circuit. It iskd on a second order Taylor

approximation of the function.

Fig. 5. Schematic of the linear part of a hiddetgat neuron (sum of
products, SOP module).

C. Sigmoid Module

As can be seen in Fig. 6, the input to the sigrididr is the
result of the computation of the linear part of tmeuron

As can be seen in Table Il, the maximum computation
frequency is greater than 100 MHz when only 10 taps
features are used (i.e. one driving behavior sjghat slightly
less than 100 MHz when a to 20 feature topologgdsiired.

(SOP). This module is based on a controlled acguradhis performance could be improved by using disted
approximation of the sigmoid function [24], [25]t | RAM memories instead of a single RAM module to stor
implements the sigmoid function with a maximunmweights and biases of the whole ANN. Each neuronldvo
approximation erroe=6x10", using a second order Taylor's have its own storage module with the aim of makiregneural
approximation scheme. architecture more flexible, and reducing signahglel

The main computation unit of the sigmoid moduleais

typical DSP core. These embedded blocks, avaiialeost TABLE Il TIMING PERFORMANCE
current FPGA families, provide high-performance hwit Topology of the Achieved Computation time
low-power consumption. Two read only memory (ROM) (2hid3/lehlljayers) frequency (MH2) 775)
modules are used to store the Taylor's coefficieROM1 10-10-10-3 126 1.40
and ROM2. Both memories are addressed by mearfseof t
most significant bits of the SOP. The circuit penfis the 20-20-20-3 91 370
computation of the sigmoid approximation in onlcleck 10-10-10-4 121 1.50
cycles. 20-20-20-4 84 4.07
D. Timing Considerations and Resources Utilization 10-10-10-5 114 1.64
Table Il presents post place and route timing tesiolr 20-20-20-5 88 3.94

different MLP topologies. As can be seen, a 10 uieat
classifier (i.e. only one driving behavior sign@R or GP) is
able to perform the network computation in lesatbps (e.g.

a 3-driver classifier requires 14, while a 5-driver classifier The most
needs 1.64is). Concerning the topology that achieves the begtsigered (ie. LUTs

recognition rates (i.e. two driving behavior signBP and

Concerning resource utilization, Table 1ll summesizhe
implementation requirements of different MLP toppés.

representative  FPGA primitives have been
registers or flip-flops, amBP

. modules). As can be seen, the percentage of resourc
GP), the 20 feature core requires only 3.i80to evaluate a jjization, in average, is less than 7% of toeslaurces in the



Xilinx’s KINTEX-7 device used in this work -it ide third in
size of this family. Therefore, it can be concludédt the
resource demands of the classifier core is smallugm to
allow full implementation of more complex topologieln
addition, the remaining resources, 93 % of the @ewould

allow the adaptation of the reference driving styledels in
long term.
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real-time ADAS implementation. Alternatively, a diea
device of this family could be selected with thenaof
reducing cost, size, and power consumption of tberal
classifier.

TABLE III. RESOURCE UTILIZATION
Topology of the DSP Mean
MLP LUTs Flip-flops Blocks resource
(2 hidden layers) utilization
10-10-10-3 3896 6468 24 22%
20-20-20-3 17623 20834 44 6.4 %
10-10-10-4 4045 6779 25 2.3%
20-20-20-4 19558 21292 45 6.8 %
10-10-10-5 4373 7044 26 2.4 %
20-20-20-5 21555 21765 46 7.2%

V. CONCLUSION

The availability of advanced driver assistance esyst
(ADAS), for safety and well-being, is becoming ieasingly
important to avoid traffic accidents caused bygiati, stress,
distractions or chronic diseases. This work conteb to the
development of ADAS with a driver-centred perspecti
which aims at improving the driver's awareness driding
performance in a personalized way.

A new approach to the problem of real-time driver

identification is presented. The proposed soluisonased on
artificial neural networks and cepstral analysihtaihed
results show that the model is able to recogniZterdnt
driving styles using non-intrusive driving behavisignals
(gas pedal signal and brake pedal signal). Theedig/then
identified through his/her driving style.

Real-time development of ADAS requires very fastl?]

electronic systems. To fulfill this requirement, a
FPGA-based hardware coprocessor for acceleratiotheof
neural classifier has been developed. The coprocesse is
able to compute the whole ANN in less thams4 In addition,
the resource demand is small
implementation of more complex topologies.

In future works we are going to improve the idéacgifion
performance of the neural classifier by adding rkiving
behavioral signals. In this sense, we will investiigthe fusion
of two additional CAN bus signals, the vehicle spaad the
engine revolutions per minute. In addition, thef@enance of
the FPGA-based system will be improved in ordeertable
on-line training. This new capability of the thessgm would

enough to allow fu

for providing the “Uyanik” data set used to perfotire
experimentation.
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