9 research outputs found

    Estimation of Aerosol Layer Height from OLCI Measurements in the O2A-Absorption Band over Oceans

    Get PDF
    The aerosol layer height (ALH) is an important parameter that characterizes aerosol interaction with the environment. An estimation of the vertical distribution of aerosol is necessary for studies of those interactions, their effect on radiance and for aerosol transport models. ALH can be retrieved from satellite-based radiance measurements within the oxygen absorption band between 760 and 770 nm (2A band). The oxygen absorption is reduced when light is scattered by an elevated aerosol layer. The Ocean and Land Colour Imager (OLCI) has three bands within the oxygen absorption band. We show a congruent sensitivity study with respect to ALH for dust and smoke cases over oceans. Furthermore, we developed a retrieval of the ALH for those cases and an uncertainty estimation by applying linear uncertainty propagation and a bootstrap method. The sensitivity study and the uncertainty estimation are based on radiative transfer simulations. The impact of ALH, aerosol optical thickness (AOT), the surface roughness (wind speed) and the central wavelength on the top of atmosphere (TOA) radiance is discussed. The OLCI bands are sufficiently sensitive to ALH for cases with AOTs larger than 0.5 under the assumption of a known aerosol type. With an accurate spectral characterization of the OLCI 2A bands better than 0.1 nm, ALH can be retrieved with an uncertainty of a few hundred meters. The retrieval of ALH was applied successfully on an OLCI dust and smoke scene. The found ALH is similar to parallel measurements by the Tropospheric Monitoring Instrument (TROPOMI). OLCI’s high spatial resolution and coverage allow a detailed overview of the vertical aerosol distribution over oceans

    Aerosol optical depth retrieval from the EarthCARE Multi-Spectral Imager: the M-AOT product

    Get PDF
    The Earth Explorer mission Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) will not only provide profile information on aerosols but also deliver a horizontal context to it through measurements by its Multi-Spectral Imager (MSI). The columnar aerosol product relying on these passive signals is called M-AOT (MSI-Aerosol Optical Thickness). Its main parameters are aerosol optical thickness (AOT) at 670 nm over ocean and valid land pixels and at 865 nm over ocean. Here, the algorithm and assumptions behind it are presented. Further, first examples of product parameters are given based on applying the algorithm to simulated EarthCARE test data and Moderate Resolution Imaging Spectroradiometer (MODIS) Level-1 data. Comparisons to input fields used for simulations, to the official MODIS aerosol product, to AErosol RObotic NETwork (AERONET) and to Maritime Aerosol Network (MAN) show an overall reasonable agreement. Over ocean, correlations are 0.98 (simulated scenes), 0.96 (compared to MYD04) and 0.9 (compared to MAN). Over land, correlations are 0.62 (simulated scenes), 0.87 (compared to MYD04) and 0.77 (compared to AERONET). A concluding discussion will focus on future improvements that are necessary and envisioned to enhance the product

    HETEAC: The Aerosol Classification Model for EarthCARE

    Get PDF
    We introduce the Hybrid End-To-End Aerosol Classification (HETEAC) model for the upcoming EarthCARE mission. The model serves as the common baseline for development, evaluation, and implementation of EarthCARE algorithms. It shall ensure the consistency of different aerosol products from the multi-instrument platform as well as facilitate the conform specification of broad-band optical properties necessary for the EarthCARE radiative closure efforts. The hybrid approach ensures the theoretical description of aerosol microphysics consistent with the optical properties of various aerosol types known from observations. The end-to-end model permits the uniform representation of aerosol types in terms of microphysical, optical and radiative properties

    Estimation of Aerosol Layer Height from OLCI Measurements in the <i>O</i><sub>2</sub>A-Absorption Band over Oceans

    No full text
    The aerosol layer height (ALH) is an important parameter that characterizes aerosol interaction with the environment. An estimation of the vertical distribution of aerosol is necessary for studies of those interactions, their effect on radiance and for aerosol transport models. ALH can be retrieved from satellite-based radiance measurements within the oxygen absorption band between 760 and 770 nm (O2A band). The oxygen absorption is reduced when light is scattered by an elevated aerosol layer. The Ocean and Land Colour Imager (OLCI) has three bands within the oxygen absorption band. We show a congruent sensitivity study with respect to ALH for dust and smoke cases over oceans. Furthermore, we developed a retrieval of the ALH for those cases and an uncertainty estimation by applying linear uncertainty propagation and a bootstrap method. The sensitivity study and the uncertainty estimation are based on radiative transfer simulations. The impact of ALH, aerosol optical thickness (AOT), the surface roughness (wind speed) and the central wavelength on the top of atmosphere (TOA) radiance is discussed. The OLCI bands are sufficiently sensitive to ALH for cases with AOTs larger than 0.5 under the assumption of a known aerosol type. With an accurate spectral characterization of the OLCI O2A bands better than 0.1 nm, ALH can be retrieved with an uncertainty of a few hundred meters. The retrieval of ALH was applied successfully on an OLCI dust and smoke scene. The found ALH is similar to parallel measurements by the Tropospheric Monitoring Instrument (TROPOMI). OLCI’s high spatial resolution and coverage allow a detailed overview of the vertical aerosol distribution over oceans

    EarthCARE Aerosol and Cloud Layer and Column Products

    Get PDF
    We introduce the development of EarthCARE Level 2 layer products derived from profile measurements of the high-spectral-resolution lidar ATLID and column products obtained from combined information of ATLID and the Multi-Spectral Imager (MSI). Layer products include cloud top height as well as aerosol layer boundaries and mean optical properties along the satellite nadir track. Synergistic column products comprise cloud top height, Ångström exponent, and aerosol type both along-track and across the MSI swath

    EarthCARE Aerosol and Cloud Layer and Column Products

    No full text
    We introduce the development of EarthCARE Level 2 layer products derived from profile measurements of the high-spectral-resolution lidar ATLID and column products obtained from combined information of ATLID and the Multi-Spectral Imager (MSI). Layer products include cloud top height as well as aerosol layer boundaries and mean optical properties along the satellite nadir track. Synergistic column products comprise cloud top height, Ångström exponent, and aerosol type both along-track and across the MSI swath

    HETEAC: The Aerosol Classification Model for EarthCARE

    No full text
    We introduce the Hybrid End-To-End Aerosol Classification (HETEAC) model for the upcoming EarthCARE mission. The model serves as the common baseline for development, evaluation, and implementation of EarthCARE algorithms. It shall ensure the consistency of different aerosol products from the multi-instrument platform as well as facilitate the conform specification of broad-band optical properties necessary for the EarthCARE radiative closure efforts. The hybrid approach ensures the theoretical description of aerosol microphysics consistent with the optical properties of various aerosol types known from observations. The end-to-end model permits the uniform representation of aerosol types in terms of microphysical, optical and radiative properties

    HETEAC: The Aerosol Classification Model for EarthCARE

    Get PDF
    We introduce the Hybrid End-To-End Aerosol Classification (HETEAC) model for the upcoming EarthCARE mission. The model serves as the common baseline for development, evaluation, and implementation of EarthCARE algorithms. It shall ensure the consistency of different aerosol products from the multi-instrument platform as well as facilitate the conform specification of broad-band optical properties necessary for the EarthCARE radiative closure efforts. The hybrid approach ensures the theoretical description of aerosol microphysics consistent with the optical properties of various aerosol types known from observations. The end-to-end model permits the uniform representation of aerosol types in terms of microphysical, optical and radiative properties
    corecore