1,822 research outputs found

    Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials

    Get PDF
    peer-reviewedThe marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012–2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds

    The Impact of Peer Mentoring on Marketing Content Mastery

    Get PDF
    This article describes and assesses a course design that uses peer mentors to facilitate a collaborative, hands-on learning experience in an introductory marketing course. Results demonstrate that peer mentoring increased content mastery and had a positive effect on students’ perceptions of the learning experience. Peer marketing mentors, along with the faculty team, achieved success in providing a demanding and engaging learning environment that meets the needs of learners and equips them with content knowledge required of career-ready professionals. A step-by-step guide is provided to enable others to develop a similar experience for students in their institutions

    A multi finger electromagnetic actuator apparatus for biomechanical studies on the hand

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Includes bibliographical references (leaves 77-80).The focus of this thesis was on the design and construction of a multi-finger haptic device powered by electromechanical voice-coil actuators. Five actuators were designed and constructed and a position and force feedback control system was implemented for each. The maximum continuous force output for each actuator ranged from 12-16 N, which is about 15%-30% of the maximum force that can be exerted by an individual finger. The bandwidth of the controlled actuators ranged from 0.7 Hz to 1.7 Hz, the steady-state error was zero, and the overshoot ranged from 3.5% to 7.7%. Four actuators were constructed into an array, with finger contact points 23 mm apart. Additional structures, such as finger holders and a wrist rest, were developed to complete the human interface. With further modifications, the multi-finger apparatus can be used to conduct biomechanical and perceptual studies of the human hand.by Kathleen L. DobsonS.M

    HPLC-ESI-MS/MS characterisation of metabolites produced by Pseudovibrio sp. W64, a marine sponge-derived bacterium isolated from Irish waters

    Get PDF
    Rationale: In recent years, metabolites produced by Pseudovibrio species have gained scientific attention due to their potent antimicrobial activity. Recently we also have assessed antibacterial activities of Pseudovibrio sp. W64 isolates against Staphylococcus aureus, where only the dominant tropodithietic acid (TDA) was identified. However characterisation of other metabolites is necessary as these metabolites may also serve as potent antimicrobial agents. Methods: LC-MS/MS, aided by accurate mass measurements, was employed to screen and characterise a range of metabolites produced by Pseudovibrio sp. W64 via assessment of ethyl acetate fractions generated from bacterial cultures. Results: Thirteen metabolites unique to the bacterial culture were detected and their chemical structures were assigned by tandem mass spectrometry and accurate mass measurement. Among the thirteen metabolites, a methyl ester of TDA, a number of cholic acid derivatives, and amino diols and triols were characterised. Conclusions: Pseudovibrio sp. W64 produces methylated TDA in addition to TDA, and metabolises lipids and amino acids in the cell-culture medium. To the best of our knowledge, this is the first report of methylated TDA, cholic acid and its various analogs, and sphinganine being detected in this Pseudovibrio strain. The data generated may help to better understand the biochemical processes and metabolism of bacterial strains towards discovery of antimicrobial agents from marine sources

    Charting a Course for Smartphones and Wearables to Transform Population Health Research

    Get PDF
    The use of data from smartphones and wearable devices has huge potential for population health research, given the high level of device ownership; the range of novel health-relevant data types available from consumer devices; and the frequency and duration with which data are, or could be, collected. Yet, the uptake and success of large-scale mobile health research in the last decade have not met this intensely promoted opportunity. We make the argument that digital person-generated health data are required and necessary to answer many top priority research questions, using illustrative examples taken from the James Lind Alliance Priority Setting Partnerships. We then summarize the findings from 2 UK initiatives that considered the challenges and possible solutions for what needs to be done and how such solutions can be implemented to realize the future opportunities of digital person-generated health data for clinically important population health research. Examples of important areas that must be addressed to advance the field include digital inequality and possible selection bias; easy access for researchers to the appropriate data collection tools, including how best to harmonize data items; analysis methodologies for time series data; patient and public involvement and engagement methods for optimizing recruitment, retention, and public trust; and methods for providing research participants with greater control over their data. There is also a major opportunity, provided through the linkage of digital person-generated health data to routinely collected data, to support novel population health research, bringing together clinician-reported and patient-reported measures. We recognize that well-conducted studies need a wide range of diverse challenges to be skillfully addressed in unison (eg, challenges regarding epidemiology, data science and biostatistics, psychometrics, behavioral and social science, software engineering, user interface design, information governance, data management, and patient and public involvement and engagement). Consequently, progress would be accelerated by the establishment of a new interdisciplinary community where all relevant and necessary skills are brought together to allow for excellence throughout the life cycle of a research study. This will require a partnership of diverse people, methods, and technologies. If done right, the synergy of such a partnership has the potential to transform many millions of people’s lives for the better

    Charting a course for smartphones and wearables to transform population health research

    Get PDF
    The use of data from smartphones and wearable devices has huge potential for population health research, given the high level of device ownership; the range of novel health-relevant data types available from consumer devices; and the frequency and duration with which data are, or could be, collected. Yet, the uptake and success of large-scale mobile health research in the last decade have not met this intensely promoted opportunity. We make the argument that digital person-generated health data are required and necessary to answer many top priority research questions, using illustrative examples taken from the James Lind Alliance Priority Setting Partnerships. We then summarize the findings from 2 UK initiatives that considered the challenges and possible solutions for what needs to be done and how such solutions can be implemented to realize the future opportunities of digital person-generated health data for clinically important population health research. Examples of important areas that must be addressed to advance the field include digital inequality and possible selection bias; easy access for researchers to the appropriate data collection tools, including how best to harmonize data items; analysis methodologies for time series data; patient and public involvement and engagement methods for optimizing recruitment, retention, and public trust; and methods for providing research participants with greater control over their data. There is also a major opportunity, provided through the linkage of digital person-generated health data to routinely collected data, to support novel population health research, bringing together clinician-reported and patient-reported measures. We recognize that well-conducted studies need a wide range of diverse challenges to be skillfully addressed in unison (eg, challenges regarding epidemiology, data science and biostatistics, psychometrics, behavioral and social science, software engineering, user interface design, information governance, data management, and patient and public involvement and engagement). Consequently, progress would be accelerated by the establishment of a new interdisciplinary community where all relevant and necessary skills are brought together to allow for excellence throughout the life cycle of a research study. This will require a partnership of diverse people, methods, and technologies. If done right, the synergy of such a partnership has the potential to transform many millions of people’s lives for the bette
    • …
    corecore