863 research outputs found

    Expression of mutant exon 1 huntingtin fragments in human neural stem cells and neurons causes inclusion formation and mitochondrial dysfunction

    Get PDF
    Robust cellular models are key in determining pathological mechanisms that lead to neurotoxicity in Huntington's disease (HD) and for high throughput pre-clinical screening of potential therapeutic compounds. Such models exist but mostly comprise non-human or non-neuronal cells that may not recapitulate the correct biochemical milieu involved in pathology. We have developed a new human neuronal cell model of HD, using neural stem cells (ReNcell VM NSCs) stably transduced to express exon 1 huntingtin (HTT) fragments with variable length polyglutamine (polyQ) tracts. Using a system with matched expression levels of exon 1 HTT fragments, we investigated the effect of increasing polyQ repeat length on HTT inclusion formation, location, neuronal survival, and mitochondrial function with a view to creating an in vitro screening platform for therapeutic screening. We found that expression of exon 1 HTT fragments with longer polyQ tracts led to the formation of intra-nuclear inclusions in a polyQ length-dependent manner during neurogenesis. There was no overt effect on neuronal viability, but defects of mitochondrial function were found in the pathogenic lines. Thus, we have a human neuronal cell model of HD that may recapitulate some of the earliest stages of HD pathogenesis, namely inclusion formation and mitochondrial dysfunction

    The Allometry of Host-Pathogen Interactions

    Get PDF
    Understanding the mechanisms that control rates of disease progression in humans and other species is an important area of research relevant to epidemiology and to translating studies in small laboratory animals to humans. Body size and metabolic rate influence a great number of biological rates and times. We hypothesize that body size and metabolic rate affect rates of pathogenesis, specifically the times between infection and first symptoms or death.We conducted a literature search to find estimates of the time from infection to first symptoms (t(S)) and to death (t(D)) for five pathogens infecting a variety of bird and mammal hosts. A broad sampling of diseases (1 bacterial, 1 prion, 3 viruses) indicates that pathogenesis is controlled by the scaling of host metabolism. We find that the time for symptoms to appear is a constant fraction of time to death in all but one disease. Our findings also predict that many population-level attributes of disease dynamics are likely to be expressed as dimensionless quantities that are independent of host body size.Our results show that much variability in host pathogenesis can be described by simple power functions consistent with the scaling of host metabolic rate. Assessing how disease progression is controlled by geometric relationships will be important for future research. To our knowledge this is the first study to report the allometric scaling of host/pathogen interactions

    Ecological and Behavioural Correlates of Intracellular Buffering Capacity in the Muscles of Antarctic Fishes

    Get PDF
    Five species of antarctic fishes can be arranged in order of increasing anaerobic capacity of the white muscles for burst swimming: Rhigophila dearborni (Zoarcidae), icefish (Channichthyidae), Dissostichus mawsoni, Trematomus centronotus, and Pagothenia borchgrevinki (Nototheniidae). This order reflects in-creasing dependence on anaerobic work done during short bursts of speed during prey capture or predator avoidance. Buffer capacity (beta) for white muscle was lower than that of behaviourally equivalent fish from lower latitudes and beta is itself temperature-dependent

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Cardiovascular MR evaluation of symptomatic severe aortic stenosis: association of circumferential myocardial strain and mortality

    Get PDF
    Background It is unknown whether circumferential strain is associated with prognosis after treatment of aortic stenosis (AS). We aimed to characterise strain in severe AS, using myocardial tagging cardiovascular magnetic resonance (CMR), prior to and following Transcatheter Aortic Valve Implantation (TAVI) and Surgical Aortic Valve Replacement (SAVR), and determine whether abnormalities in strain were associated with outcome. Methods CMR was performed pre- and 6 m post-intervention in 98 patients (52 TAVI, 46 SAVR; 77 ± 8 years) with severe AS. TAVI patients were older (80.9 ± 6.4 vs. 73.0 ± 7.0 years, p  −18.7% was associated with significantly reduced survival. Conclusion TAVI and SAVR procedures are associated with comparable declines in rotational LV mechanics at 6 m, with largely unchanged strain and strain rates. Pre-operative peak mid LV circumferential strain is associated with post-operative mortality

    A cost-utility analysis of cervical cancer vaccination in preadolescent Canadian females

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite the fact that approximately 70% of Canadian women undergo cervical cancer screening at least once every 3 years, approximately 1,300 women were diagnosed with cervical cancer and approximately 380 died from it in 2008. This study estimates the effectiveness and cost-effectiveness of vaccinating 12-year old Canadian females with an AS04-adjuvanted cervical cancer vaccine. The indirect effect of vaccination, via herd immunity, is also estimated.</p> <p>Methods</p> <p>A 12-health-state 1-year-cycle Markov model was developed to estimate lifetime HPV related events for a cohort of 12-year old females. Annual transition probabilities between health-states were derived from published literature and Canadian population statistics. The model was calibrated using Canadian cancer statistics. From a healthcare perspective, the cost-effectiveness of introducing a vaccine with efficacy against HPV-16/18 and evidence of cross-protection against other oncogenic HPV types was evaluated in a population undergoing current screening practices. The base-case analysis included 70% screening coverage, 75% vaccination coverage, 135/doseforvaccine,and3135/dose for vaccine, and 3% discount rate on future costs and health effects. Conservative herd immunity effects were taken into account by estimated HPV incidence using a mathematical model parameterized by reported age-stratified sexual mixing data. Sensitivity analyses were performed to address parameter uncertainties.</p> <p>Results</p> <p>Vaccinating 12-year old females (n = 100,000) was estimated to prevent between 390-633 undiscounted cervical cancer cases (reduction of 47%-77%) and 168-275 undiscounted deaths (48%-78%) over their lifetime, depending on whether or not herd immunity and cross-protection against other oncogenic HPV types were included. Vaccination was estimated to cost 18,672-$31,687 per QALY-gained, the lower range representing inclusion of cross-protective efficacy and herd immunity. The cost per QALY-gained was most sensitive to duration of vaccine protection, discount rate, and the correlation between probability of screening and probability of vaccination.</p> <p>Conclusion</p> <p>In the context of current screening patterns, vaccination of 12-year old Canadian females with an ASO4-ajuvanted cervical cancer vaccine is estimated to significantly reduce cervical cancer and mortality, and is a cost-effective option. However, the economic attractiveness of vaccination is impacted by the vaccine's duration of protection and the discount rate used in the analysis.</p

    Markers of Myocardial Damage Predict Mortality in Patients With Aortic Stenosis

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) is increasingly used for risk stratification in aortic stenosis (AS). However, the relative prognostic power of CMR markers and their respective thresholds remains undefined. Objectives: Using machine learning, the study aimed to identify prognostically important CMR markers in AS and their thresholds of mortality. Methods: Patients with severe AS undergoing AVR (n = 440, derivation; n = 359, validation cohort) were prospectively enrolled across 13 international sites (median 3.8 years’ follow-up). CMR was performed shortly before surgical or transcatheter AVR. A random survival forest model was built using 29 variables (13 CMR) with post-AVR death as the outcome. Results: There were 52 deaths in the derivation cohort and 51 deaths in the validation cohort. The 4 most predictive CMR markers were extracellular volume fraction, late gadolinium enhancement, indexed left ventricular end-diastolic volume (LVEDVi), and right ventricular ejection fraction. Across the whole cohort and in asymptomatic patients, risk-adjusted predicted mortality increased strongly once extracellular volume fraction exceeded 27%, while late gadolinium enhancement >2% showed persistent high risk. Increased mortality was also observed with both large (LVEDVi >80 mL/m2) and small (LVEDVi ≤55 mL/m2) ventricles, and with high (>80%) and low (≤50%) right ventricular ejection fraction. The predictability was improved when these 4 markers were added to clinical factors (3-year C-index: 0.778 vs 0.739). The prognostic thresholds and risk stratification by CMR variables were reproduced in the validation cohort. Conclusions: Machine learning identified myocardial fibrosis and biventricular remodeling markers as the top predictors of survival in AS and highlighted their nonlinear association with mortality. These markers may have potential in optimizing the decision of AVR
    corecore