2,131 research outputs found

    The effect of boundary constraints on finite element modelling of the human pelvis

    Get PDF
    The use of finite element analysis (FEA) to investigate the biomechanics of anatomical systems critically relies on the specification of physiologically representative boundary conditions. The biomechanics of the pelvis has been the specific focus of a number of FEA studies previously, but it is also a key aspect in other investigations of, for example, the hip joint or new design of hip prostheses. In those studies, the pelvis has been modelled in a number of ways with a variety of boundary conditions, ranging from a model of the whole pelvic girdle including soft tissue attachments to a model of an isolated hemi-pelvis. The current study constructed a series of FEA models of the same human pelvis to investigate the sensitivity of the predicted stress distributions to the type of boundary conditions applied, in particular to represent the sacro-iliac joint and pubic symphysis. Varying the method of modelling the sacro-iliac joint did not produce significant variations in the stress distribution, however changes to the modelling of the pubic symphysis were observed to have a greater effect on the results. Over-constraint of the symphysis prevented the bending of the pelvis about the greater sciatic notch, and underestimated high stresses within the ilium. However, permitting medio-lateral translation to mimic widening of the pelvis addressed this problem. These findings underline the importance of applying the appropriate boundary conditions to FEA models, and provide guidance on suitable methods of constraining the pelvis when, for example, scan data has not captured the full pelvic girdle. The results also suggest a valid method for performing hemi-pelvic modelling of cadaveric or archaeological remains which are either damaged or incomplete

    Relationships between walking speed, T-score and age with gait parameters in older post-menopausal women with low bone mineral density

    Get PDF
    Background: The gait patterns of women with low bone mineral density (BMD) or osteoporosis have not been thoroughly explored, and when examined, often studied in relation to falls and kyphosis. Research question: The aim of this study was to investigate the relationships between gait parameters and comfortable, self-selected walking speed and BMD in older post-menopausal women with a broad range of T-scores (healthy to osteoporotic). Methods: 3D kinematic and kinetic data were collected from forty-five women mean (SD) age 67.3 (1.4) years during level walking at their preferred speed. Multiple regression analyses explored the explained variance attributable to speed, femoral neck T-score, and age. Results: The mean (SD) walking speed 1.40 (0.19) m·s−1explained the variance in most temporal-spatial, kinematic and joint powers (R2= 12–68%, P ≤ 0.01). T-score accounted for (R2= 23%, P ≤ 0.001) of the shared explained variance in stride width. It also increased the explanatory power for knee flexion (R2= 7%, P ≤ 0.05) and knee range of motion (R2= 12%, P ≤ 0.01). Power absorption by the knee flexors in terminal swing (K4) was the only power burst resulting in significant slope coefficients for all predictor variables (R2= 52 and 54%) (P ≤ 0.001) and (R2= 68%, P ≤ 0.05). Significance: Speed alone explained most of the variance in the gait parameters, while speed and T-score combined increased the explanatory power of the regression models for some of the knee joint variables. Our findings demonstrated that older post-menopausal women, with a broad range of T-scores, are able to walk at comfortably fast speeds, generating gait patterns similar to those of younger women. The results also suggest that strengthening the hip abductor, knee extensor and flexor muscle groups may benefit the gait patterns of older postmenopausal women with low BMD

    The potential role of variations in juvenile hip geometry on the development of Legg-Calvé-Perthes disease: a biomechanical investigation

    Get PDF
    © 2018 Informa UK Limited, trading as Taylor & Francis Group Legg-Calvé-Perthes disease (LCP) is one of the most poorly understood diseases in paediatric orthopaedics. One common trait of LCP is the marked morphological difference between healthy and pathological hips, early deviations of which (i.e. prior to disease onset) have been suggested to lead to the overload and collapse of the epiphysis. Here, the impact of common variations in geometry is investigated with a finite element model of a juvenile femur under single leg standing and landing. Here, the impact of typical variations in geometry is investigated with a finite element model of a juvenile femur under single leg standing and landing. The variations appear to have only a limited effect on the stress distribution in the femoral epiphysis even during high impact activities. This suggests that, for this individual at least, they would be unlikely to cause epiphyseal overload and collapse, even in the presence of a skeletally immature epiphysis

    Pastiches sovversivi. Strategie della parodia e della satira in Luciano di Samosata

    Get PDF
    Parody and pastiche are among the main literary and satirical strategies used by Lucian of Samosata. The aim of this article is to explore the relationship between the reuse of the tradition of Greek paideia and the new perspectives of literature through the analysis of a serie of examples (cat., hist. conscr., VH, Peregr., Alex.). On the one hand, there is the recognition of the greatness of the ancient authors and certainly there is also the literary pleasure of pepaideumenos. At the same time, in contrast to what happens for mimesis in the Second Sophistic, Lucian’s parody and satirical pastiches look in other directions, because parody, by its nature and through the 'necessary gap', always implies a principle of subversion of the tradition: in Lucian's Works the satiric rule of «believing in nothing» produces its effects in the development of Literature

    Exogenous misfolded protein oligomers can cross the intestinal barrier and cause a disease phenotype in C. elegans.

    Get PDF
    Misfolded protein oligomers are increasingly recognized as highly cytotoxic agents in a wide range of human disorders associated with protein aggregation. In this study, we assessed the possible uptake and resulting toxic effects of model protein oligomers administered to C. elegans through the culture medium. We used an automated machine-vision, high-throughput screening procedure to monitor the phenotypic changes in the worms, in combination with confocal microscopy to monitor the diffusion of the oligomers, and oxidative stress assays to detect their toxic effects. Our results suggest that the oligomers can diffuse from the intestinal lumen to other tissues, resulting in a disease phenotype. We also observed that pre-incubation of the oligomers with a molecular chaperone (αB-crystallin) or a small molecule inhibitor of protein aggregation (squalamine), reduced the oligomer absorption. These results indicate that exogenous misfolded protein oligomers can be taken up by the worms from their environment and spread across tissues, giving rise to pathological effects in regions distant from their place of absorbance

    Open release of male mosquitoes infected with a wolbachia biopesticide: field performance and infection containment

    Get PDF
    BACKGROUND: Lymphatic filariasis (LF) is a globally significant disease, with 1.3 billion persons in 83 countries at risk. A coordinated effort of administering annual macrofilaricidal prophylactics to the entire at-risk population has succeeded in impacting and eliminating LF transmission in multiple regions. However, some areas in the South Pacific are predicted to persist as transmission sites, due in part to the biology of the mosquito vector, which has led to a call for additional tools to augment drug treatments. Autocidal strategies against mosquitoes are resurging in the effort against invasive mosquitoes and vector borne disease, with examples that include field trials of genetically modified mosquitoes and Wolbachia population replacement. However, critical questions must be addressed in anticipation of full field trials, including assessments of field competitiveness of transfected males and the risk of unintended population replacement. METHODOLOGY/PRINCIPAL FINDINGS: We report the outcome of field experiments testing a strategy that employs Wolbachia as a biopesticide. The strategy is based upon Wolbachia-induced conditional sterility, known as cytoplasmic incompatibility, and the repeated release of incompatible males to suppress a population. A criticism of the Wolbachia biopesticide approach is that unintended female release or horizontal Wolbachia transmission can result in population replacement instead of suppression. We present the outcome of laboratory and field experiments assessing the competitiveness of transfected males and their ability to transmit Wolbachia via horizontal transmission. CONCLUSIONS/SIGNIFICANCE: The results demonstrate that Wolbachia-transfected Aedes polynesiensis males are competitive under field conditions during a thirty-week open release period, as indicated by mark, release, recapture and brood-hatch failure among females at the release site. Experiments demonstrate the males to be \u27dead end hosts\u27 for Wolbachia and that methods were adequate to prevent population replacement at the field site. The findings encourage the continued development and extension of a Wolbachia autocidal approach to additional medically important mosquito species
    • …
    corecore