12 research outputs found

    Electrochemical recovery of zinc from the spent pickling baths coming from the hot dip galvanizing industry. Potentiostatic operation

    Full text link
    An electrochemical reactor was developed to recover zinc from the spent pickling solutions coming from the hot dip galvanizing industry. These solutions mainly contain ZnCl2 and FeCl2 in aqueous HCl media. The effect of the applied potential on the figures of merit (fractional conversion, current efficiency, space-time yield and specific energy consumption) of the electrochemical reactor was analysed. Voltammetric experiments were performed previously in order to select the optimum conditions to be applied in the electrolysis experiments. From the I-V curves it was inferred that bulk zinc deposition started from potential values more cathodic than -0.99 V. The hydrogen evolution reaction (HER) appeared from -0.45 V and masked the zinc cathodic peak C1, related to bulk zinc deposition, at high HCl concentrations. The presence of HCl inhibited iron deposition in synthetic samples. The additives present in the real baths, which diminish the massive hydrogen generation, allowed the observation of peak C1. The potential values to be applied in the electrolysis experiments were chosen from the voltammetric experiments and ranged between -1 V and -1.75 V. In the absence of iron in solution, as the electrode potential was shifted towards more negative values, the space-time yield of zinc and its fractional conversion increased because of the increase in the electrode roughness and the hydrogen turbulence-promoting action. Simultaneously, the specific energy consumption decreased initially due to the increase in the zinc conversion rate but decreased for the most cathodic potential value due to HER. The presence of iron in synthetic solutions led to a decrease in current efficiency associated with the reverse redox Fe 2+/Fe3+ system and to the enhancement of the HER, which also induced increments in the local pH and the subsequent zinc redissolution for the most cathodic potential values. On the contrary, the additives present in the real spent pickling baths avoided the adverse effects of iron, and zinc electrodeposition was possible even at high cathodic potential values. In fact, a potential value of -1.75 V was selected as the optimum since the conversion, the current efficiency and the space time yield obtained in the real baths were relatively high.Authors want to express their gratitude to the Universidad Politecnica de Valencia for the economical support in the project reference PAID-06-08, and to the Generalitat Valenciana for the financing of the project reference GV/2010/029.Carrillo Abad, J.; García Gabaldón, M.; Ortega Navarro, EM.; Pérez-Herranz, V. (2011). Electrochemical recovery of zinc from the spent pickling baths coming from the hot dip galvanizing industry. Potentiostatic operation. Separation and Purification Technology. 81(2):200-207. https://doi.org/10.1016/j.seppur.2011.07.029S20020781

    Hydrothermal Synthesis and Characterization of PEG-Mn3O4 Nanocomposite

    No full text
    Here, we report on the synthesis of PEG-5/Mn3O4 nanocomposite (NP's) via a hydrothermal route by using Mn(acac)(2), ethanol, NH3 and PEG-400. The crystalline phase was identified as Mn3O4. The crystallite size of the PEG-Mn3O4 nanocomposite was calculated as 12 +/- 5 urn from X-ray line profile fitting and the average particle size from TEM was obtained as 200 nm. This reveals polycrystalline character of Mn3O4 NP's. The interaction between PEG-400 and the Mn3O4 NP's was investigated by FTIR. Temperature independent AC conductivity of PEG-Mn3O4 nanocomposite beyond 20 kHz provides a strong evidence of ionic conduction through the structure. The conductivity and permittivity measurements strongly depend on the secondary thermal transition of nanocomposite beyond 100 degrees C. Above that temperature, Mn3O4 particles may interact with each other yielding a percolated path that will facilitate the conduction. On the other hand, the relatively lower activation energy (E-a=0.172 eV) for relaxation process suggests that polymer segmental motions of PEG and electrons hopping between Mn2+ and Mn3+ may be coupled in the sample below 100 degrees C. Room temperature magnetization curve of the sample does not reach to a saturation, which indicates the superparamagnetic character of the particles. As the temperature increases, the frequency at which (epsilon '') reaches a maximum shifted towards higher frequencies. The maximum peak was observed at 1.4 kHz for 20 degrees C while the maximum was detected at 23.2 kHz for 90 degrees C

    Polarographisches Schrifttum

    No full text
    corecore