32 research outputs found

    Biosynthesis of gold nanoparticles using diatoms-silica-gold and EPS-gold bionanocomposite formation

    Get PDF
    Novel synthesis of gold nanoparticles, EPS-gold, and silica-gold bionanocomposites by biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. Scanning electron microscopy (SEM) and TEM showed that the nanoparticles were associated with the diatom frustules and extracellular polysaccharides (EPS) excreted by the diatom cells. Due to its accessibility, simplicity, and effectiveness, this method of nanocomposites preparation has great importance for possible future applications

    Ag-AgCl nanoparticles fixation on electrospun PVA fibres: Technological concept and progress

    Get PDF
    Polymer-metal based material with unique 3D structure is an attractive substrate for the development of biomedical applications. A novel preparation of the composite from polymer fibres and silver nanoparticles has been designed through: (1) preparation of silver nanoparticles by phytosynthesis and (2) incorporation of these nanoparticles in a fibrous membrane prepared by electrospinning. The nanoparticle biosynthesis was performed in a pure environmental-friendly, easy, static, bottom-up in vitro regime using Tilia sp. leachate. TEM and XRD depict the formation, stabilisation and encapsulation of crystalline silver (14 +/- 9 nm) nanoparticles (NPs) in one simple step with low tendency to aggregate. We achieved successful incorporation in the uniform electrospun 221 +/- 24 nm poly(vinylalcohol) fibres, and this confirms the possibility of its use in the biomedical field. Both SEM with EDX and TEM analysis determined fibre uniformity with the presence of silver NPs, and ICP-AES confirmed the relatively similar metal concentration throughout the triplicate measurement of fibre structures on the 2 x 2 cm area in the following manner: 0.303 +/- 0.018 wt. %, 0.282 +/- 0.017 wt. %, and 0.281 +/- 0.017 wt. %. Our hypothesis is based on previously verified preparation of active silver NPs and the easily prepared PVA electrospun fibres which act as a water soluble matrix. The simple methodology of incorporating biosynthetically prepared NPs in the PVA fibers highlights the effectiveness of this material, with simple release from water-soluble PVA and final activation of the prepared NPs.Web of Science9art. no. 1552

    Magneto-optical studies of BaFe12O19 films grown by metallo-organic decomposition

    Get PDF
    M-type barium hexagonal ferrites BaFe12O19 (BaM) films considered for new devices that operate in the 40-70 GHz range with small or zero applied magnetic fields were characterized by magneto-optical (MO) complex polar “Kerr” effect (PKE) spectroscopy, MO magnetometry, and spectral ellipsometry (SE). The textured polycrystalline films were grown on Pt(111)/TiO2 template on Si wafer using metallo-organic decomposition technique (MOD) followed by rapid thermal annealing. In the films grown in one, two and three MOD iterations, the thickness was evaluated by SE and transmission electron microscopy. The film thickness ranged from 30 nm to 50 nm per MOD iteration. The best films display out-of-plane effective magnetic anisotropy field of 13 kOe, high perpendicular remanent magnetization and ferromagnetic resonance linewidth of 340 Oe at 60 GHz. The coercivity deduced from the MO hysteresis loops ranged between 0.25 kOe and 0.52 kOe. The SE and PKE spectra were taken at photon energies from 0.7 eV to 6.4 eV and from 1.2 eV to 4.8 eV, respectively. The PKE spectra display the structure observed on BaM single crystal natural faces normal to the c-axis. They are consistent with magnetoplumbite structure, with high degree of grain c-axis ordering, absence of foreign phases and Fe valence-exchange mechanism. Single phase nature of the films was further confirmed by grazing incidence X-ray diffraction and 57Fe nuclear magnetic resonance at 4.2 K.Web of Science561330132

    Fungus Aspergillus niger processes exogenous zinc nanoparticles into a biogenic oxalate mineral

    Get PDF
    Zinc oxide nanoparticles (ZnO NPs) belong to the most widely used nanoparticles in both commercial products and industrial applications. Hence, they are frequently released into the environment. Soil fungi can affect the mobilization of zinc from ZnO NPs in soils, and thus they can heavily influence the mobility and bioavailability of zinc there. Therefore, ubiquitous soil fungus Aspergillus niger was selected as a test organism to evaluate the fungal interaction with ZnO NPs. As anticipated, the A. niger strain significantly affected the stability of particulate forms of ZnO due to the acidification of its environment. The influence of ZnO NPs on fungus was compared to the aqueous Zn cations and to bulk ZnO as well. Bulk ZnO had the least effect on fungal growth, while the response of A. niger to ZnO NPs was comparable with ionic zinc. Our results have shown that soil fungus can efficiently bioaccumulate Zn that was bioextracted from ZnO. Furthermore, it influences Zn bioavailability to plants by ZnO NPs transformation to stable biogenic minerals. Hence, a newly formed biogenic mineral phase of zinc oxalate was identified after the experiment with A. niger strain's extracellular metabolites highlighting the fungal significance in zinc biogeochemistry.Web of Science64art. no. 21

    Influence of iron substitution by selected rare-earth ions on the properties of NiZn ferrite fillers and PVC magneto-polymer composites

    No full text
    Nickel-zinc ferrites are very important soft magnetic materials from the point of view of diverse technical applications (such as, e.g., various electronic devices and components) for their high magnetic permeability and permittivity, low core loss, high resistivity, high Curie temperature as well as mechanical strength and chemical stability. Due to their good absorbing properties, they can be used as microwave absorbing and shielding materials with the aim of decreasing the environmental pollution caused by non-ionizing microwave radiation. The ferrite material incorporated into the polymer matrix creates qualitatively new magneto-polymer composite material taking benefits from both components. The properties typical for polymers (elasticity, mouldability, etc.) are combined with good high-frequency magnetic parameters, thus allowing to utilize these materials, e.g., in high-frequency applications where especially flexibility of composite materials plays a key role. Small amounts of selected rare-earth (RE) ions, in particular Y3+, La3+, Eu3+ and Gd3+ have been embedded into the nickel-zinc ferrite that has been used as the magnetic filler in magnetic polymer composites with polyvinylchloride (PVC) acting as the polymeric matrix. The effect of various types of rare-earth ions on the structural as well as quasi-static and dynamic (electro)magnetic properties of the ferrite fillers as well as ferrite/PVC composites, in particular the frequency dispersion of the complex permeability, has been studied

    Effect of foliar spray application of zinc oxide nanoparticles on quantitative, nutritional, and physiological parameters of foxtail millet (Setaria italica L.) under field conditions

    Get PDF
    It has been shown that the foliar application of inorganic nano-materials on cereal plants during their growth cycle enhances the rate of plant productivity by providing a micro-nutrient source. We therefore studied the effects of foliarly applied ZnO nanoparticles (ZnO NPs) on Setaria italica L. foxtail millet's quantitative, nutritional, and physiological parameters. Scanning electron microscopy showed that the ZnO NPs have an average particle size under 20 nm and dominant spherically shaped morphology. Energy dispersive X-ray spectrometry then confirmed ZnO NP homogeneity, and X-ray diffraction verified their high crystalline and wurtzite-structure symmetry. Although plant height, thousand grain weight, and grain yield quantitative parameters did not differ statistically between ZnO NP-treated and untreated plants, the ZnO NP-treated plant grains had significantly higher oil and total nitrogen contents and significantly lower crop water stress index (CWSI). This highlights that the slow-releasing nano-fertilizer improves plant physiological properties and various grain nutritional parameters, and its application is therefore especially beneficial for progressive nanomaterial-based industries.Web of Science911art. no. 155

    Effects of structures of molybdenum catalysts on selectivity in gas-phase propylene oxidation

    No full text
    Molybdenum-based catalysts for the gas-phase oxidation of propylene with air were investigated. Various types of silica-supported molybdenum oxide and molybdenum-bismuth mixed oxide catalysts were prepared from inorganic and organometallic molybdenum precursors using wet impregnation and physical vapor deposition methods. The epoxidation activities of the prepared catalysts showed direct correlations with their nanostructures, which were identified using transmission electron microscopy. The appearance of a partly or fully crystalline molybdenum oxide phase, which interacted poorly with the silica support, decreased the selectivity for propylene oxide formation to below 10%; non-crystalline octahedrally coordinated molybdenum species anchored on the support gave propylene oxide formations greater than 55%, with 11% propylene conversion. Electrochemical characterization of molybdenum oxides with various morphologies showed the importance of structural defects. Direct promotion by bismuth of the epoxidation reactivities over molybdenum oxides is disputed.Web of Science36111909190

    Direct gas-phase epoxidation of propylene over nanostructured molybdenum oxide film catalysts

    No full text
    Mixed molybdenum oxides are widely used catalysts for propylene oxidation to acrolein or acrylic acid or for methanol oxidation in the gas phase. In the present study, however molybdenum oxides exhibited an epoxidation activity in the gas phase. To achieve this activity, the oxidation state, particle sizes and accessibility of molybdenum oxides are needed to be controlled. Such active molybdenum species can be prepared by PVD deposition of molybdenum nanorods and their subsequent oxidation in a controlled atmosphere. Accordingly, monoclinic MoO2 particles with a diameter of < 10 nm can be prepared, which exhibit 42% selectivity to propylene oxide (the byproducts of the oxidation being mainly acrolein and acetone). In comparison, molybdenum-containing catalysts prepared by traditional impregnation methods exhibited practically zero epoxidation activity in gas-phase epoxidation of propylene.Web of Science34211

    Direct gas-phase epoxidation of propylene over nanostructured molybdenum oxide film catalysts

    No full text
    Mixed molybdenum oxides are widely used catalysts for propylene oxidation to acrolein or acrylic acid or for methanol oxidation in the gas phase. In the present study, however molybdenum oxides exhibited an epoxidation activity in the gas phase. To achieve this activity, the oxidation state, particle sizes and accessibility of molybdenum oxides are needed to be controlled. Such active molybdenum species can be prepared by PVD deposition of molybdenum nanorods and their subsequent oxidation in a controlled atmosphere. Accordingly, monoclinic MoO2 particles with a diameter of < 10 nm can be prepared, which exhibit 42% selectivity to propylene oxide (the byproducts of the oxidation being mainly acrolein and acetone). In comparison, molybdenum-containing catalysts prepared by traditional impregnation methods exhibited practically zero epoxidation activity in gas-phase epoxidation of propylene.Web of Science34211
    corecore