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ABSTRACT Novel synthesis of gold nanoparticles, EPS-gold and silica-gold bionanocomposites by 

biologically driven processes employing two diatom strains (Navicula atomus, Diadesmis gallica) is 

described. Transmission electron microscopy (TEM) and electron diffraction analysis (SAED) revealed 

a presence of gold nanoparticles in the experimental solutions of the diatom culture mixed with 

tetrachloroaureate. Nature of the gold nanoparticles was confirmed by X-ray diffraction studies. 

Scanning electron microscopy (SEM) and TEM showed that the nanoparticles were associated with the 

diatom frustules and extracellular polysaccharides (EPS) excreted by the diatom cells. Due to its 

accessibility, simplicity and effectiveness, this method of nanocomposites preparation has great 

importance for possible future applications. 
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Introduction 

Development of reliable and eco-friendly procedures of metallic nanoparticles and nanocomposites 

synthesis is crucial for success of increasingly advancing nanotechnology applications. In present years, 

increasing attention is paid to a synthesis of composites that either directly appears from or is inspired 

by the nature (Bellezza et al. 2009). Some relevant ways using “natural factories” of various organisms 

as well as possible applications of free nanoparticles were previously widely discussed and reviewed by 

e.g. Mohanpuria et al. 2008, or Bhattacharya and Gupta 2005. Biosynthesis of metallic nanoparticles by 

photoautotrophic organisms (Brayner et al. 2007, Lengke et al. 2006a, Lengke et al. 2006b, Lengke et 

al. 2007a)
 
or their components (Brayner et al. 2009, Krpetic et al. 2009)

  
were also tested and described 

recently. 

Gold nanoparticles (AuNPs) exhibit high catalytic activity although bulk gold is typically catalytically 

ineffective (Dotzauer et al. 2006, Sardar et al. 2009). Catalytic activity of some artificially prepared 

AuNPs was previously examined (Carregal-Romero et al. 2010, Saha et al. 2010). However, despite of 

high reactivity and efficiency of metallic colloids as homogenous catalysts, their application to large-

scale processes is limited due to the reduction of catalytic activity by particle aggregation. Therefore, for 

practical utilization (e.g. for medical purposes), nanoparticles are usually immobilized on solid matrices 

such as silica, aluminum, and metal oxides (Budroni et al. 2006, Bus et al. 2005, Mallick et al. 2004, 

Kim et al. 2008). 

Diatoms are unicellular photosynthesizing microorganisms belonging into the group of brown algae 

(division Chromophyta, class Bacillariophyceae) encased in siliceous cell walls – frustules. Frustule of 

a diatom is always formed by two valves (epitheca and hypotheca) connected together by circular pieces 

of silica called girdle bands. The construction material of a frustule is mainly nanostructured amorphous 

polymerized silicic acid (van den Hoek et al. 1995). Surface of the frustule is finely structured with 

extensions, perforations, thickenings, or thin areas in the wall, and the final pattern together with a 

frustule shape is characteristic for each species. The ability of reproduction of such precise forms results 
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from unique mechanism of silica acquirement and processing, which has been previously described in 

detail (Volcani 1981, Hildebrand 2003). New valves are produced after cell division and cytokinesis of 

the mother protoplast. The final silica polymerization and its deposition onto the forming diatom wall 

occur in flattened vesicles called silica deposit vesicles (SDVs). It is likely, that the precise formation of 

the valve pattern is facilitated by organic macromolecules of the vesicle matrix. When the siliceous wall 

is completely formed, exocytosis occurs and two daughter cells each containing maternal epitheca and 

newly formed hypotheca are separated. The inner membrane of the SDVs becomes the new 

plasmalemma, whereas the outer membrane now forms primary coatings around the silica
18

. The 

proteins associated with the mature diatom cell wall contain highly conserved repeated building block 

and have been denoted as frustulins (Kröger et al. 1996, van de Poll et al. 1999). The mechanism of 

diatom frustule formation is further investigated as a model for biomimetic synthesis of silica 

nanostructures (El Rassy et al. 2005, Crawford et al. 2009, Hildebrand 2005). 

Although biosynthesis of nanoparticles through phototrophic organisms such as cyanobacteria, algae 

(Chakraborty et al. 2009, Mata et al. 2009)
 
or higher plants (Krpetic et al. 2009) was noted previously, 

this work describes the very first detailed experiments carried out using diatoms, or organisms with 

silica based shells respectively. Formation of nanoparticles in presence of siliceous frustules likely 

provides occasions for novel bionanocomposite use. We present experiments leading to a protocol for 

synthesis of AuNPs, EPS-gold and silica-gold bionanocomposites by biologically driven processes in 

diatoms. 

 

Materials and Methods 

Diatom strains and cultures 

Diatom cultures (Navicula atomus CCALA 383 – NA; Diadesmis gallica CCALA 766 – DG) were 

obtained from the Culture Collection of the Centre of Algology in Třebon, Biology Centre of the AS 

CR, Institute of Hydrobiology, Czech Republic. Strains were kept in 1 L Erlenmayer flasks with cotton 
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plugs containing WC Medium (Guillard and Lorenzen 1972), into which water glass (Na2SiO3.5H2O) 

was added to obtain final concentration of 500 mg of silica per liter of media, ensuring no silica 

limitation for the diatom growth. The conditions at the growth chamber (KBW-240, Binder, Germany) 

were controlled to 21°C and 16h/8h light/dark cycle (5 x 36 W/m² Osram Lumilux Cool Daylight 

fluorescent lamp). Prior the beginning of the experiment, the cultures were transferred into fresh 

medium (20% (v/v) of inoculum), and were grown for approximately four weeks to reach a stationary 

“growth” phase. 

Diatoms Biosynthesis Experiments 

Experiments were conducted to examine the role of diatoms in the synthesis of AuNPs from aqueous 

solutions of Au salts. To initiate the experiments, 10 mL of gold solution tetrachloroaureate (HAuCl4; 

Sigma-Aldrich) (≈ 50 mg/mL Au) was added to 10 mL of 4-weeks old diatom culture in liquid WC 

Medium (≈ 20 mg dry weight) in 50 mL Falcon flasks. The solutions in flasks were then let to incubate 

in laboratory conditions (moderate light and 23°C) for 12 hours. Experiments were organized as 

triplicates. Abiotic control was performed in the same conditions using liquid WC Medium without the 

diatom cultures.  

UV-VIS Analyses and Light Microscopy (LM) 

Noble metal nanoparticles exhibit a strong UV-visible (UV-VIS) absorption band that is not present in 

the spectrum of the bulk metal (surface plasmon resonance – SPR). An amount of 1,5 mL of each 

sample suspension was centrifuged (2 minutes, 8.000 x g, EBA 21, Hettich, Germany). The optical 

absorption spectra of the samples were measured by UV-VIS spectrophotometer Cintra 303 (GBC 

Scientific Equipment, Illinois, USA). 

The diatom cultures alone (reference control) as well as their suspension with tetrachloroaureate were 

examined using an OLYMPUS BX 51 brightfield microscope with high resolution Nomarski DIC 

optics, equipped with a DC 71 digital camera, under an immersion oil lens at 1000x magnification. 

Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) 

Journal of nanoparticle research. 2011, vol. 13, no. 8, p. 3207-3216. http://dx.doi.org/10.1007/s11051-011-0221-6

11/08/2011



 

5 

Unstained whole sample mounts of diatoms and AuNPs from the experiments were examined with a 

Jeol 1200 EX TEM microscope (JEOL Ltd., Tokyo, Japan) operating at 120 kV and field emission SEM 

microscope JSM-7401F (JEOL Ltd., Tokyo, Japan) with cryo system for high-resolution SEM Gatan 

ALTO 2500 (Gatan Inc., USA). The whole mounts were prepared by floating carbon-coated grids on a 

drop of culture for several minutes to allow the cells and any fine-grained particles to attach to the grid. 

Nature of observed crystalline structures was confirmed by the Selected Area Electron Diffraction 

(SAED) method. 

Image analysis 

Image analysis tool (JMicrovision: Image Analysis Toolbox, www.jmicrovision.com) was used for 

size and shape analysis of the nanoparticles in the experimental samples. Two TEM micrographs from 

each sample underwent the image analyses. 

Grazing incidence X-ray diffraction (XRD) 

X-ray diffraction patterns were obtained using Bruker AXS D8 Discover diffractometer (Bruker, 

USA) with CuK radiation and 12 kW rotating anode in grazing incidence (GI) geometry. The 

diffraction patterns were taken from dried specimens, incidence angle was 4 degrees. 

 

Results 

Approximately 2 hours after experiment initiation, color of all of the experimental solutions started to 

turn dark reddish. The samples were let to incubate for total amount of 12 hours and subsequently 

centrifuged. Although the color of the liquid was still red, measurement of UV-VIS spectra did not 

prove any characteristic AuNPs surface plasmon resonance peak. This indicated presence of AuNPs 

only in the pellet of the cells. 

This presumption was confirmed by LM observations (see Fig. 1). Compared to the reference control  

(Fig. 1 a),c)), diatom cells in the experimental samples and their proximate surroundings changed their 

color to deep red, signaling the presence of AuNPs fixed to the living substance (Fig. 1 b),d)). LM 

Journal of nanoparticle research. 2011, vol. 13, no. 8, p. 3207-3216. http://dx.doi.org/10.1007/s11051-011-0221-6

11/08/2011



 

6 

micrograph also showed spilt living substance, which indicated that certain part of diatom cells have 

died during the bioreduction process.     

Photographs from the TEM clearly show presence of spherical AuNPs in experimental samples for 

both diatom strains (see Fig. 2, ESM Supporting Fig. 1), the Au nature of these crystalline nanoparticles 

was confirmed by SAED patterns (Fig. 2 b),d)). It was observed that the AuNPs remain captured in EPS 

net in the extracellular space (e.g. Fig. 2 a)), or are directly associated with the diatom frustule structures 

(e.g. Fig. 2 c)). 

Both detailed TEM pictures (Fig. 2 b),d)) and image analysis (JMicrovision programme) confirmed 

mostly spherical shape of the nanoparticles. Size of the biosynthesized nanoparticles differed in each 

strain (see Fig. 3). Whereas DG samples showed larger mean particle size (around 22 nm) and wider 

range of the size distribution, AuNPs synthesized by NA strain had smaller mean particle size (9 nm) 

and higher homogeneity in size.  

The spatial distribution of the nanoparticles in the sample was examined using SEM with a 

cryochamber, which allowed avoiding changes caused by dehydration procedures in standard SEM 

preparation methods. Using the backscatter secondary electron detector, the attachment of the 

nanoparticles to the diatom mass was observed. The SEM photographs (Fig. 4, see also ESM Supporting 

Fig. 2, 3) clearly show shape of the diatom frustules, as well as the structures of the intercellular matter 

(EPS) with attached nanoparticles. In accordance with the light microscopy observations, SEM depicted 

the nanoparticles distributed in more loosened and thicker layer of the EPS structures around the cells 

and directly on the frustule surface of the DG strain (Fig. 4 a),b)), whereas dense fibrous net of the EPS 

close to the frustule surface with entrapped nanoparticles can be seen in pictures of the NA strain (Fig. 4 

b),c)). 

On the other hand, abiotic control experiments without diatom cultures did not prove presence of 

AuNPs in the solution neither by the color change nor by means of any microscopy technique (data not 

shown). 
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X-ray diffraction explicitly confirmed presence of crystalline gold in all of the experimental 

suspensions and therefore is in compliance with other observations. As an illustration, diffractogram of 

DG is shown in Fig. 5. All peaks of the diffractogram are in good agreement with theoretical 

presumptions for cubical gold. We observed similar diffractogram in case of the NA strain (not shown), 

which differed in additional peaks indicating minute presence of other ingredients originating most 

likely from the WC medium salt precipitates or unexpended tetrachloroaureate. 

 

Discussion 

Concerning the speed of diatom nanoparticle biosynthesis, the duration of the bioreduction of gold 

tested in this experiment was in order of hours. Such time is shorter comparing to studies of NPs 

biosynthesis in cyanobacteria, in which the bioreduction took place in order of days (Lengke et al. 

2006a, 2007a) and conversely longer or similar to studies on bacteria or fungi (Lengke and Southam 

2006, Vijayakumar and Prasad 2009). However, all of the experiments indeed strongly depend on mass 

of biomass used, pH of bioreduction, salt concentration etc. (Brayner et al. 2007, Lengke et al. 2007b) 

and the cultivation have not yet been optimized. 

Results obtained in combination of LM, EM, and UV-VIS spectroscopy indicate that the 

biosynthesized AuNPs are bound to the cellular structures and intercellular EPS. In previous studies of 

nanoparticle biosynthesis (e.g. Lengke et al. 2007a), presence of free NPs directly in the solution of the 

cell culture and metallic salt was confirmed through SPR spectra. However, direct measurements of the 

UV-VIS spectra were not possible for the treated suspension of the diatom culture, as the siliceous 

frustules cause significant dispersion of the light beam and wavelength changes. Instead, we used a 

supernatant of the experimental solution centrifuged at 8.000 x g. This speed assured sedimentation of 

larger particles such as diatom frustules, whereas it was not sufficient to separate particles of the size of 

AuNPs (these would settle down at the speed of approximately 15.000 x g or more). SPR spectra did not 

confirm presence of free AuNPs produced by diatoms, suggesting their exclusive fixation onto the cell 
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structures. This fact has considerable significance for future utilization of the nanoparticles. It is 

expected that EPS with imbedded AuNPs as well as the siliceous frustules with adsorbed AuNPs could 

be isolated from the solution and used for further applications (e.g. in heterogeneous catalysis). 

TEM micrographs well documented sizes and shapes of the AuNPs. Different size was observed for 

each of the tested strains. Moreover, JMicrovision image analysis revealed notable difference between 

the size of the AuNPs embedded in the EPS structures and the AuNPs adsorbed to frustule surface. 

When compared, particles in the EPS are roughly 50% smaller than the ones on the silica surface. This 

phenomenon is likely caused either by the nature of the microstructure of the silica surface or by the 

constitution of the EPS net. Yet, for the potential practical application of the nanoparticles synthesized 

by diatoms, possibility of certain regulation of the size and the size distribution by using alternative 

tetrachloroaureate concentration, temperature or other parameters is expected (Lengke et al. 2007b). 

Although we did not perform any viability studies during the biosynthesis process, LM showed 

remarkable changes in the cells. Based on this fact and previous studies (Lengke et al. 2006a, Brayner et 

al. 2007) we can assume that reduction of HAuCl4 occurs in the presence of both living and lifeless 

biomass. However, we cannot distinguish contribution of vital and dead diatom cells to the bioreduction 

process.      

The observations from the LM and EM suggest slightly different way of the AuNPs deposition in 

each diatom strain. DG cells were strongly surrounded by veil of EPS in which the AuNPs were 

captured and distributed (Fig. 1 c)), whereas in NA cells the AuNPs were attached to thin layer of the 

EPS in the frustule direct proximity (Fig. 4 c)). Besides, both strains had nanoparticles directly adhered 

to the surface of the siliceous frustule (Fig. 4 b), 2 c)). Yet, the conclusions on the EPS abundance and 

extent are uncertain, as we also noticed remarkable disintegration of the living matter due to the 

unfavorable growth conditions caused by the tetrachloroaureate added into the medium (especially in 

the DG strain). The cell content discharged off some of the frustules might have mixed with the EPS. 

On the other hand, observed embedding of the nanoparticles in the organic matter seemed to be very 
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stable; the very same picture was obtained more than 30 days after the experiment performance. 

Significance of the EPS structures for the NPs stabilization was previously discussed in case of 

cyanobacteria (Brayner et al. 2007). Function of the EPS is basically the same for both cyanobacteria 

and diatoms. Primarily, they form a mechanical and chemical protective biofilm around the cells; other 

functions are e.g. formation of interspecies communication network in symbioses etc. (Paerl and 

Pinckney 1996, Ben-Ari 1999, Christensen 1999, Allison et al. 2000, Flemming et al. 2000, Wimpenny 

2000, Flemming and Windenger 2001). EPS are negatively charged and possess metal-binding 

capabilities (Sutherland 2001a, Sutherland 2001b), so that after intracellular synthesis, gold 

nanoparticles are released to the culture medium (as observed in cyanobacteria e.g. by Bhattacharia and 

Gupta (2005), Lengke et al. (2006a)) and can be directly attached to the EPS. Embedding of released 

nanoparticles into a polysaccharide network of the diatom EPS is clearly visible in both TEM and SEM 

micrographs attained in this study (Fig. 2, 4). Moreover, our observations indicate a stabilization 

function of the diatom EPS against NPs aggregation. 

It is likely that important role in AuNPs biosynthesis and transport off the cell in diatoms is played by 

the SDVs, as the formations of corresponding proportions were frequently seen on the TEM 

micrographs of the experimental samples (see ESM Supporting Fig. 4). However, the mechanism of 

nanoparticles formation by the living cells (or with their contribution) is still largely unclear, despite 

increasing number of new studies concerned with this question. According to the accessible sources, 

reduction in phototrophic organisms occurs through interaction of the metallic salt with cellular organic 

compounds such as carbohydrates or proteins. Previous studies with heavy metal recovery in brown 

algae (Mata et al. 2009, Kuyucak and Volesky 1989) 
 
indicated that reduction of Au

3+
 to Au

0
 occurred 

through oxidation of hydroxyl groups (abundant in polysaccharides of the algal cell wall) to carbonyl 

groups. Also algal pigments rich in hydroxyl groups (e.g. fucoxanthins – Kuyucak and Volesky (1989)), 

or other highly reactive functional groups such as sulfhydryl present in the polysaccharides of the cell 

wall (responsible for its brown color – fucoidans (Kuyucak and Volesky 1989)), could be involved in 
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the reduction processes. Greene et al. (1986) determined the importance of these groups in experiments 

with the green alga Chlorella vulgaris (their chemical modification reduced the gold uptake). Last but 

not least, the role of silaffin polypeptides in the nanoparticles formation should be mentioned. Sillafins 

are a class of heavily posttranslationally modified proteins responsible for mediating silica deposition at 

ambient temperature and pressure (Davis et al. 1986, Kroger et al. 1999). Within the native peptides, 

lysine residues are modified to long-chain polyamines and serine residues phosphorylated Foo et al. 

2004, Kroger et al. 2002). Native silaffin polypeptides isolated from a diatom Cylindrotheca fusiformis 

can catalyze the silica precipitation in vitro from a silica precursor under slightly acidic conditions 

(Kroger et al. 2001)). This process is caused by a self-assembly of the silica due to the silaffins activity 

resulting into the silica nanoparticle formation (Nam et al. 2009). We expect that the silaffins might play 

role also in synthesis of other types of nanoparticles such as AuNPs; however additional research 

beyond the scope of this study would be necessary to verify this hypothesis. 

It is well known that gold is an excellent catalyst for many organic oxidation reactions. In fact, current 

research is focused on the development of gold nanocatalysers for the chemical industry (Hughes et al. 

2005). Obtained bionanocomposite appears to be suitable adept for applications in catalysis or further 

modifications e.g. cell modification by ferrofluids Mosinoewicz-Szablewska et al. 2010). 

 

Conclusions 

Biosynthesis of gold nanoparticles has been successfully conducted using two strains of diatoms 

mixed with aqueous HAuCl4 (≈ 500 mg/L Au) at laboratory conditions. The interaction of diatoms with 

aqueous salt promoted the precipitation of gold nanoparticles. Shapes and sizes, chemical composition 

and interaction with siliceous frustules and EPS of the diatoms were described by the methods of light 

and electron microscopy and X-rays diffraction techniques. 

Presented method of tetrachloroaurate reduction by diatoms appears to be worthwhile, effective and 

low-cost method of binonacomposites preparation. Besides, performance of the described method is 
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very simple (uses organisms commonly living in streams and ponds worldwide, can be performed at 

room temperature and in physiologic pH) and environmentally friendly compared to other chemical 

methods that use toxic reagents. Due to their remarkable properties, we also expect that silica-gold and 

EPS-gold bionanocomposites have potentially a great value for various applications and should be 

further studied. 
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Electronic Supporting  Material Available: TEM micrograph of Navicula atomus cells after 

tetrachloroaureate addition (Supporting Fig. 1); SEM overview micrograph of Navicula atomus cells 

after tetrachloroaureate addition (Supporting Fig. 2); SEM micrograph of Diadesmis gallica cells after 

tetrachloroaureate addition. Association of gold nanoparticles with EPS structures between two DG 

frustules. (Supporting Fig. 3); TEM micrograph of Navicula atomus cells after tetrachloroaureate 

addition. Detail of silica deposit vesicles (marked with arrow) (Supporting Fig. 4).  

Figure captions 

 

Figure 1. Light microscope photographs of the diatom cells before (left) and 12 hours after (right) 

tetrachloroaureate addition for (a,c) Diadesmis gallica, and (b,d) Navicula atomus. 

Figure 2. TEM micrographs of (a,c) Diadesmis gallica, and (b,d) Navicula atomus cells after 

tetrachloroaureate addition. Gold nanoparticles captured in the EPS net of the intercellular space of DG 

(a). Detail of association of gold nanoparticles with the frustule surface in the raphe region of NA (c). 

Detail micrographs of AuNPs and SAED patterns for DG (b), and NA strains (d).  

Figure 3. Histogram of size distribution of gold nanoparticles synthesized by (a) Diadesmis gallica, and 
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(b) Navicula atomus after tetrachloroaureate addition. 

Figure 4. SEM micrographs of (a,c) Diadesmis gallica, and (b,d) Navicula atomus cells after 

tetrachloroaureate addition. Detail of gold nanoparticles deposition on the silica frustule surface of the 

DG cells (b). Association of gold nanoparticles with the EPS structures of the NA cell (c). Detail 

micrograph of gold nanoparticles embedded into the EPS chain of the NA cell (d). 

Figure 5. Theta-2theta diffraction pattern of gold nanoparticles synthesized by Diadesmis gallica after 

tetrachloroaureate addition. 
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