120 research outputs found

    The Physiology of Mycobacterium tuberculosis in the Context of Drug Resistance: A System Biology Perspective

    Get PDF
    Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb), is the main cause of death due to an infectious disease. After more than 100 years of the discovery of Mtb, clinicians still face difficulties finding an effective treatment for the increasing number of drug-resistant cases. The difficulties in the clinical setting can be related to the slow pace at which the understanding of the physiology of this bacterium has occurred. Mtb is distinct from other microorganisms not only due to its slow growth and difficulties to study in the laboratory, but also due to its inherent physiology such as its complex cell envelope and its metabolic pathways. Understanding the physiology of drug susceptible and resistant Mtb strains is crucial for the design of an effective chemotherapy against TB. This chapter will review the mycobacterial cell envelope and major physiological pathways together with recent discoveries in Mtb drug resistance through different “omics” disciplines

    Pathogenic nontuberculous mycobacteria resist and inactivate cathelicidin: implication of a novel role for polar mycobacterial lipids

    Get PDF
    Includes bibliographic references.Nontuberculous mycobacteria (NTM) are a large group of environmental organisms with worldwide distribution, but only a relatively few are known to be pathogenic. Chronic, debilitating lung disease is the most common manifestation of NTM infection, which is often refractory to treatment. The incidence and prevalence of NTM lung disease are increasing in the United States and in many parts of the world. Hence, a more complete understanding of NTM pathogenesis will provide the foundation to develop innovative approaches to treat this recalcitrant disease. Herein, we domonstrate that several species of NTM show broad resistance to the antimicrobial peptide, cathelicidin (LL-37). Resistance to LL-37 was not significantly different between M. avium that contain serovar-specific glycopeptidolipid (GPL, M. aviumˢˢᴳᴾᴸ) and M.avium that do not (M. aviumᐞˢˢᴳᴾᴸ). Similarly, M. Abscessus containing non-specific GPL (M. abscessusⁿˢᴳᴾᴸ⁽⁺⁾) or lacking nsGPL (M. abscessusⁿˢᴳᴾᴸ⁽⁻⁾) remained equally resistant to LL-37. These findings would support the notion that GPL are not the components responsible for NTM resistance to LL-37. Unexpectedly, the growth of M. abscessusⁿˢᴳᴾᴸ⁽⁻⁾ increased with LL-37 or scrambled LL-37 peptide in a dose-dependent fashion. We also discovered that LL-37 exposed to NTM had reduced antimicrobial activity, and initial work indicates that this is likely due to inactivation of LL-37 by lipid component(s) of the NTM cell envelope. We conclude that pathogenic NTM resist and inactivate LL-37. The mechanism by which NTM circumvent the antimicrobial activity of LL-37 remains to be determined

    Towards a method for cryopreservation of mosquito vectors of human pathogens

    Get PDF
    Mosquito-borne diseases are responsible for millions of human deaths every year, posing a massive burden on global public health. Mosquitoes transmit a variety of bacteria, parasites and viruses. Mosquito control efforts such as insecticide spraying can reduce mosquito populations, but they must be sustained in order to have long term impacts, can result in the evolution of insecticide resistance, are costly, and can have adverse human and environmental effects. Technological advances have allowed genetic manipulation of mosquitoes, including generation of those that are still susceptible to insecticides, which has greatly increased the number of mosquito strains and lines available to the scientific research community. This generates an associated challenge, because rearing and maintaining unique mosquito lines requires time, money and facilities, and long-term maintenance can lead to adaptation to specific laboratory conditions, resulting in mosquito lines that are distinct from their wild-type counterparts. Additionally, continuous rearing of transgenic lines can lead to loss of genetic markers, genes and/or phenotypes. Cryopreservation of valuable mosquito lines could help circumvent these limitations and allow researchers to reduce the cost of rearing multiple lines simultaneously, maintain low passage number transgenic mosquitoes, and bank lines not currently being used. Additionally, mosquito cryopreservation could allow researchers to access the same mosquito lines, limiting the impact of unique laboratory or field conditions. Successful cryopreservation of mosquitoes would expand the field of mosquito research and could ultimately lead to advances that would reduce the burden of mosquito-borne diseases, possibly through rear-and-release strategies to overcome mosquito insecticide resistance. Cryopreservation techniques have been developed for some insect groups, including but not limited to fruit flies, silkworms and other moth species, and honeybees. Recent advances within the cryopreservation field, along with success with other insects suggest that cryopreservation of mosquitoes may be a feasible method for preserving valuable scientific and public health resources. In this review, we will provide an overview of basic mosquito biology, the current state of and advances within insect cryopreservation, and a proposed approach toward cryopreservation of Anopheles stephensi mosquitoes

    IFNγ Response to Mycobacterium tuberculosis, Risk of Infection and Disease in Household Contacts of Tuberculosis Patients in Colombia

    Get PDF
    OBJECTIVES: Household contacts (HHCs) of pulmonary tuberculosis patients are at high risk of Mycobacterium tuberculosis infection and early disease development. Identification of individuals at risk of tuberculosis disease is a desirable goal for tuberculosis control. Interferon-gamma release assays (IGRAs) using specific M. tuberculosis antigens provide an alternative to tuberculin skin testing (TST) for infection detection. Additionally, the levels of IFNgamma produced in response to these antigens may have prognostic value. We estimated the prevalence of M. tuberculosis infection by IGRA and TST in HHCs and their source population (SP), and assessed whether IFNgamma levels in HHCs correlate with tuberculosis development. METHODS: A cohort of 2060 HHCs was followed for 2-3 years after exposure to a tuberculosis case. Besides TST, IFNgamma responses to mycobacterial antigens: CFP, CFP-10, HspX and Ag85A were assessed in 7-days whole blood cultures and compared to 766 individuals from the SP in Medellín, Colombia. Isoniazid prophylaxis was not offered to child contacts because Colombian tuberculosis regulations consider it only in children under 5 years, TST positive without BCG vaccination. RESULTS: Using TST 65.9% of HHCs and 42.7% subjects from the SP were positive (OR 2.60, p<0.0001). IFNgamma response to CFP-10, a biomarker of M. tuberculosis infection, tested positive in 66.3% HHCs and 24.3% from the SP (OR = 6.07, p<0.0001). Tuberculosis incidence rate was 7.0/1000 person years. Children <5 years accounted for 21.6% of incident cases. No significant difference was found between positive and negative IFNgamma responders to CFP-10 (HR 1.82 95% CI 0.79-4.20 p = 0.16). However, a significant trend for tuberculosis development amongst high HHC IFNgamma producers was observed (trend Log rank p = 0.007). DISCUSSION: CFP-10-induced IFNgamma production is useful to establish tuberculosis infection prevalence amongst HHC and identify those at highest risk of disease. The high tuberculosis incidence amongst children supports administration of chemoprophylaxis to child contacts regardless of BCG vaccination

    Emergence of a unique group of necrotizing mycobacterial diseases.

    Get PDF
    Although most diseases due to pathogenic mycobacteria are caused by Mycobacterium tuberculosis, several other mycobacterial diseases-caused by M. ulcerans (Buruli ulcer), M. marinum, and M. haemophilum-have begun to emerge. We review the emergence of diseases caused by these three pathogens in the United States and around the world in the last decade. We examine the pathophysiologic similarities of the diseases (all three cause necrotizing skin lesions) and common reservoirs of infection (stagnant or slow-flowing water). Examination of the histologic and pathogenic characteristics of these mycobacteria suggests differences in the modes of transmission and pathogenesis, though no singular mechanism for either characteristic has been definitively described for any of these mycobacteria

    The non-clonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa

    Get PDF
    Background. The Beijing genotype of M. tuberculosis is a virulent strain that is disseminating worldwide and has a strong association with drug resistance. In the Western Cape of South Africa, epidemiological studies have identified the R220 cluster of the Beijing genotype as a major contributor to a recent outbreak of drug-resistant tuberculosis. Although the outbreak is considered to be due to clonal transmission, the relationship among drug resistant isolates has not yet been established. Results. To better understand the evolution of drug resistance among these strains, 14 drug-resistant clinical isolates of the Beijing genotype were sequenced by whole-genome sequencing, including eight from R220 and six from a more ancestral Beijing cluster, R86, for comparison. While each cluster shares a distinct resistance mutation for isoniazid, mapping of other drug-resistance mutations onto a phylogenetic tree constructed from single nucleotide polymorphisms shows that resistance mutations to many drugs have arisen multiple times independently within each cluster of isolates. Thus, drug resistance among these isolates appears to be acquired, not clonally derived. This observation suggests that, although the Beijing genotype as a whole might have selective advantages enabling its rapid dissemination, the XDR isolates are relatively less fit and do not propagate well. Although it has been hypothesized that the increased frequency of drug resistance in some Beijing lineages might be caused by a mutator phenotype, no significant shift in synonymous substitution patterns is observed in the genomes. Conclusion. While MDR-TB is spreading by transmission in the Western Cape, our data suggests that further drug resistance (i.e. XDR-TB) at this stage is acquired.Peer Reviewe

    Improved Protective Efficacy of a Species-Specific DNA Vaccine Encoding Mycolyl-Transferase Ag85A from Mycobacterium ulcerans by Homologous Protein Boosting

    Get PDF
    Vaccination with plasmid DNA encoding Ag85A from M. bovis BCG can partially protect C57BL/6 mice against a subsequent footpad challenge with M. ulcerans. Unfortunately, this cross-reactive protection is insufficient to completely control the infection. Although genes encoding Ag85A from M. bovis BCG (identical to genes from M. tuberculosis) and from M. ulcerans are highly conserved, minor sequence differences exist, and use of the specific gene of M. ulcerans could possibly result in a more potent vaccine. Here we report on a comparison of immunogenicity and protective efficacy in C57BL/6 mice of Ag85A from M. tuberculosis and M. ulcerans, administered as a plasmid DNA vaccine, as a recombinant protein vaccine in adjuvant or as a combined DNA prime-protein boost vaccine. All three vaccination formulations induced cross-reactive humoral and cell-mediated immune responses, although species-specific Th1 type T cell epitopes could be identified in both the NH2-terminal region and the COOH-terminal region of the antigens. This partial species-specificity was reflected in a higher—albeit not sustained—protective efficacy of the M. ulcerans than of the M. tuberculosis vaccine, particularly when administered using the DNA prime-protein boost protocol

    Portrait of a Pathogen: The Mycobacterium tuberculosis Proteome In Vivo

    Get PDF
    Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a facultative intracellular pathogen that can persist within the host. The bacteria are thought to be in a state of reduced replication and metabolism as part of the chronic lung infection. Many in vitro studies have dissected the hypothesized environment within the infected lung, defining the bacterial response to pH, starvation and hypoxia. While these experiments have afforded great insight, the picture remains incomplete. The only way to study the combined effects of these environmental factors and the mycobacterial response is to study the bacterial response in vivo.We used the guinea pig model of tuberculosis to examine the bacterial proteome during the early and chronic stages of disease. Lungs were harvested thirty and ninety days after aerosol challenge with Mtb, and analyzed by liquid chromatography-mass spectrometry. To date, in vivo proteomics of the tubercle bacillus has not been described and this work has generated the first large-scale shotgun proteomic data set, comprising over 500 unique protein identifications. Cell wall and cell wall processes, and intermediary metabolism and respiration were the two major functional classes of proteins represented in the infected lung. These classes of proteins displayed the greatest heterogeneity indicating important biological processes for establishment of a productive bacterial infection and its persistence. Proteins necessary for adaptation throughout infection, such as nitrate/nitrite reduction were found at both time points. The PE-PPE protein class, while not well characterized, represented the third most abundant category and showed the most consistent expression during the infection.Cumulatively, the results of this work may provide the basis for rational drug design - identifying numerous Mtb proteins, from essential kinases to products involved in metal regulation and cell wall remodeling, all present throughout the course of infection
    corecore