3,042 research outputs found

    Diagrammatic perturbation theory and the pseudogap

    Full text link
    We study a model of quasiparticles on a two-dimensional square lattice coupled to Gaussian distributed dynamical fields. The model describes quasiparticles coupled to spin or charge fluctuations and is solved by a Monte Carlo sampling of the molecular field distributions. The non-perturbative solution is compared to various approximations based on diagrammatic perturbation theory. When the molecular field correlations are sufficiently weak, the diagrammatic calculations capture the qualitative aspects of the quasiparticle spectrum. For a range of model parameters near the magnetic boundary, we find that the quasiparticle spectrum is qualitatively different from that of a Fermi liquid in that it shows a double peak structure, and that the diagrammatic approximations we consider fail to reproduce, even qualitatively, the results of the Monte Carlo calculations. This suggests that the pseudogap induced by a coupling to antiferromagnetic fluctuations and the spin-splitting of the quasiparticle peak induced by a coupling to ferromagnetic spin-fluctuations lie beyond diagrammatic perturbation theory

    A technique for automatic real time scoring of several simultaneous sleep electroencephalograms

    Get PDF
    Automatic real-time scoring of simultaneous sleep electroencephalogram

    Variation in Foraging Behavior Among Nesting Stages of Female Red-Faced Warblers

    Get PDF
    Foraging rates and maneuvers were examined in breeding female Red-faced Warblers (Cardellina rubrifrons) among egg-laying, incubation, and nestling stages. All measures varied among nesting stages, with prey attack rate and search speed significantly increasing from egg-laying to incubation through the nestling stage. During egg-laying and incubation, birds gleaned stationary prey from a fixed perch, but shifted to hover-sallying for stationary prey during the nestling period. These dynamic behavioral patterns may reflect responses to variable time constraints and energetic costs associated with different stages of the nesting cycle

    LOCV calculations for polarized liquid 3He^3{He} with the spin-dependent correlation

    Full text link
    We have used the lowest order constrained variational (LOCV) method to calculate some ground state properties of polarized liquid 3He^{3}He at zero temperature with the spin-dependent correlation function employing the Lennard-Jones and Aziz pair potentials. We have seen that the total energy of polarized liquid 3He^{3}He increases by increasing polarization. For all polarizations, it is shown that the total energy in the spin-dependent case is lower than the spin-independent case. We have seen that the difference between the energies of spin-dependent and spin-independent cases decreases by increasing polarization. We have shown that the main contribution of the potential energy comes from the spin-triplet state.Comment: 14 pages, 5 figures. Int. J. Mod. Phys. B (2008) in pres

    Vacuum Energy: Myths and Reality

    Full text link
    We discuss the main myths related to the vacuum energy and cosmological constant, such as: ``unbearable lightness of space-time''; the dominating contribution of zero point energy of quantum fields to the vacuum energy; non-zero vacuum energy of the false vacuum; dependence of the vacuum energy on the overall shift of energy; the absolute value of energy only has significance for gravity; the vacuum energy depends on the vacuum content; cosmological constant changes after the phase transition; zero-point energy of the vacuum between the plates in Casimir effect must gravitate, that is why the zero-point energy in the vacuum outside the plates must also gravitate; etc. All these and some other conjectures appear to be wrong when one considers the thermodynamics of the ground state of the quantum many-body system, which mimics macroscopic thermodynamics of quantum vacuum. In particular, in spite of the ultraviolet divergence of the zero-point energy, the natural value of the vacuum energy is comparable with the observed dark energy. That is why the vacuum energy is the plausible candidate for the dark energy.Comment: 24 pages, 2 figures, submitted to the special issue of Int. J. Mod. Phys. devoted to dark energy and dark matter, IJMP styl

    Spin Model for Inverse Melting and Inverse Glass Transition

    Full text link
    A spin model that displays inverse melting and inverse glass transition is presented and analyzed. Strong degeneracy of the interacting states of an individual spin leads to entropic preference of the "ferromagnetic" phase, while lower energy associated with the non-interacting states yields a "paramagnetic" phase as temperature decreases. An infinite range model is solved analytically for constant paramagnetic exchange interaction, while for its random exchange, analogous results based on the replica symmetric solution are presented. The qualitative features of this model are shown to resemble a large class of inverse melting phenomena. First and second order transition regimes are identified

    Magneto-Acoustic Spectroscopy in Superfluid 3He-B

    Full text link
    We have used the recently discovered acoustic Faraday effect in superfluid 3He to perform high resolution spectroscopy of an excited state of the superfluid condensate. With acoustic cavity interferometry we measure the rotation of the plane of polarization of a transverse sound wave propagating in the direction of magnetic field from which we determine the Zeeman energy of the excited state. We interpret the Lande g-factor, combined with the zero-field energies of the state, using the theory of Sauls and Serene to calculate the strength of f -wave interactions in 3He.Comment: 4 pages, 5 figures, submitted to PRL, Aug 30th, 200

    Simulations of the flocculent spiral M33: what drives the spiral structure?

    Get PDF
    We perform simulations of isolated galaxies in order to investigate the likely origin of the spiral structure in M33. In our models, we find that gravitational instabilities in the stars and gas are able to reproduce the observed spiral pattern and velocity field of M33, as seen in HI, and no interaction is required. We also find that the optimum models have high levels of stellar feedback which create large holes similar to those observed in M33, whilst lower levels of feedback tend to produce a large amount of small scale structure, and undisturbed long filaments of high surface density gas, hardly detected in the M33 disc. The gas component appears to have a significant role in producing the structure, so if there is little feedback, both the gas and stars organise into clear spiral arms, likely due to a lower combined QQ (using gas and stars), and the ready ability of cold gas to undergo spiral shocks. By contrast models with higher feedback have weaker spiral structure, especially in the stellar component, compared to grand design galaxies. We did not see a large difference in the behaviour of QstarsQ_{stars} with most of these models, however, because QstarsQ_{stars} stayed relatively constant unless the disc was more strongly unstable. Our models suggest that although the stars produce some underlying spiral structure, this is relatively weak, and the gas physics has a considerable role in producing the large scale structure of the ISM in flocculent spirals.Comment: 17 pages, 17 figures, accepted for publication in MNRA

    A Mechanism Linking Two Known Vulnerability Factors for Alcohol Abuse: Heightened Alcohol Stimulation and Low Striatal Dopamine D2 Receptors

    Get PDF
    Alcohol produces both stimulant and sedative effects in humans and rodents. In humans, alcohol abuse disorder is associated with a higher stimulant and lower sedative responses to alcohol. Here, we show that this association is conserved in mice and demonstrate a causal link with another liability factor: low expression of striatal dopamine D2 receptors (D2Rs). Using transgenic mouse lines, we find that the selective loss of D2Rs on striatal medium spiny neurons enhances sensitivity to ethanol stimulation and generates resilience to ethanol sedation. These mice also display higher preference and escalation of ethanol drinking, which continues despite adverse outcomes. We find that striatal D1R activation is required for ethanol stimulation and that this signaling is enhanced in mice with low striatal D2Rs. These data demonstrate a link between two vulnerability factors for alcohol abuse and offer evidence for a mechanism in which low striatal D2Rs trigger D1R hypersensitivity, ultimately leading to compulsive-like drinkingFil: Bocarsly, Miriam E.. National Institutes of Health; Estados UnidosFil: da Silva e Silva, Daniel. National Institutes of Health; Estados UnidosFil: Kolb, Vanessa. National Institutes of Health; Estados UnidosFil: Luderman, Kathryn D.. National Institutes of Health; Estados UnidosFil: Shashikiran, Sannidhi. National Institutes of Health; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Sibley, David R.. National Institutes of Health; Estados UnidosFil: Dobbs, Lauren K.. National Institutes of Health; Estados Unidos. University of Texas at Austin; Estados UnidosFil: Álvarez, Verónica Alicia. National Institutes of Health; Estados Unido
    corecore