2,924 research outputs found
Effects on muscle tension and tracking task performance of simulated sonic booms with low and high intensity vibrational components
Effects of simulated sonic booms with high and low intensity vibrational components on tracking task performance and muscle tension in human subject
Reliability of laboratory tests of VSTOL and other long duration noises
Paired-comparison and magnitude estimations of the subjective noisiness or unacceptability of noise from fixed wing jet aircraft and simulated noise of VSTOL aircraft were obtained from groups of subjects given different instructions. These results suggest that VSTOL noises can be evaluated in terms of their noisiness or unwantedness to people with reasonable accuracy by units of the physical measures designated as PNdBM, with or without tone corrections, and dBD sub 2. Also, that consideration should be given to the use of D sub 2 as an overall frequency weighting function for sound level meters instead of the presently available A weighting. Two new units of noise measurement, PLdB and dB(E), used for predicting subjective noisiness, were found to be less accurate than PNdBM or dBD sub 2 in this regard
Disturbance of human sleep by subsonic jet aircraft noise and simulated sonic booms
Comparison of human sleep disturbance in three age groups by subsonic jet aircraft noise and simulated sonic boom
A Mechanism Linking Two Known Vulnerability Factors for Alcohol Abuse: Heightened Alcohol Stimulation and Low Striatal Dopamine D2 Receptors
Alcohol produces both stimulant and sedative effects in humans and rodents. In humans, alcohol abuse disorder is associated with a higher stimulant and lower sedative responses to alcohol. Here, we show that this association is conserved in mice and demonstrate a causal link with another liability factor: low expression of striatal dopamine D2 receptors (D2Rs). Using transgenic mouse lines, we find that the selective loss of D2Rs on striatal medium spiny neurons enhances sensitivity to ethanol stimulation and generates resilience to ethanol sedation. These mice also display higher preference and escalation of ethanol drinking, which continues despite adverse outcomes. We find that striatal D1R activation is required for ethanol stimulation and that this signaling is enhanced in mice with low striatal D2Rs. These data demonstrate a link between two vulnerability factors for alcohol abuse and offer evidence for a mechanism in which low striatal D2Rs trigger D1R hypersensitivity, ultimately leading to compulsive-like drinkingFil: Bocarsly, Miriam E.. National Institutes of Health; Estados UnidosFil: da Silva e Silva, Daniel. National Institutes of Health; Estados UnidosFil: Kolb, Vanessa. National Institutes of Health; Estados UnidosFil: Luderman, Kathryn D.. National Institutes of Health; Estados UnidosFil: Shashikiran, Sannidhi. National Institutes of Health; Estados UnidosFil: Rubinstein, Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Sibley, David R.. National Institutes of Health; Estados UnidosFil: Dobbs, Lauren K.. National Institutes of Health; Estados Unidos. University of Texas at Austin; Estados UnidosFil: Álvarez, Verónica Alicia. National Institutes of Health; Estados Unido
The properties, origin and evolution of stellar clusters in galaxy simulations and observations
We investigate the properties and evolution of star particles in two simulations of isolated spiral galaxies, and two galaxies from cosmological simulations. Unlike previous numerical work, where typically each star particle represents one ‘cluster’, for the isolated galaxies we are able to model features we term ‘clusters’ with groups of particles. We compute the spatial distribution of stars with different ages, and cluster mass distributions, comparing our findings with observations including the recent LEGUS survey. We find that spiral structure tends to be present in older (100s Myrs) stars and clusters in the simulations compared to the observations. This likely reflects differences in the numbers of stars or clusters, the strength of spiral arms, and whether the clusters are allowed to evolve. Where we model clusters with multiple particles, we are able to study their evolution. The evolution of simulated clusters tends to follow that of their natal gas clouds. Massive, dense, long-lived clouds host massive clusters, whilst short-lived clouds host smaller clusters which readily disperse. Most clusters appear to disperse fairly quickly, in basic agreement with observational findings. We note that embedded clusters may be less inclined to disperse in simulations in a galactic environment with continuous accretion of gas onto the clouds than isolated clouds and correspondingly, massive young clusters which are no longer associated with gas tend not to occur in the simulations. Caveats of our models include that the cluster densities are lower than realistic clusters, and the simplistic implementation of stellar feedback
Generic User Process Interface for Event Generators
Generic Fortran common blocks are presented for use by High Energy Physics
event generators for the transfer of event configurations from parton level
generators to showering and hadronization event generators.Comment: Physics at TeV Colliders II Workshop, Les Houches, France, May 2001
14 pages, 6 figure
A quantitative theory of current-induced step bunching on Si(111)
We use a one-dimensional step model to study quantitatively the growth of
step bunches on Si(111) surfaces induced by a direct heating current.
Parameters in the model are fixed from experimental measurements near 900 deg C
under the assumption that there is local mass transport through surface
diffusion and that step motion is limited by the attachment rate of adatoms to
step edges. The direct heating current is treated as an external driving force
acting on each adatom. Numerical calculations show both qualitative and
quantitative agreement with experiment. A force in the step down direction will
destabilize the uniform step train towards step bunching. The average size of
the step bunches grows with electromigration time as t^beta, with beta = 0.5,
in agreement with experiment and with an analytical treatment of the steady
states. The model is extended to include the effect of direct hopping of
adatoms between different terraces. Monte-Carlo simulations of a solid-on-solid
model, using physically motivated assumptions about the dynamics of surface
diffusion and attachment at step edges, are carried out to study two
dimensional features that are left out of the present step model and to test
its validity. These simulations give much better agreement with experiment than
previous work. We find a new step bending instability when the driving force is
along the step edge direction. This instability causes the formation of step
bunches and antisteps that is similar to that observed in experiment.Comment: 11 pages, 7 figure
The influence of surface stress on the equilibrium shape of strained quantum dots
The equilibrium shapes of InAs quantum dots (i.e., dislocation-free, strained
islands with sizes >= 10,000 atoms) grown on a GaAs (001) substrate are studied
using a hybrid approach which combines density functional theory (DFT)
calculations of microscopic parameters, surface energies, and surface stresses
with elasticity theory for the long-range strain fields and strain relaxations.
In particular we report DFT calculations of the surface stresses and analyze
the influence of the strain on the surface energies of the various facets of
the quantum dot. The surface stresses have been neglected in previous studies.
Furthermore, the influence of edge energies on the island shapes is briefly
discussed. From the knowledge of the equilibrium shape of these islands, we
address the question whether experimentally observed quantum dots correspond to
thermal equilibrium structures or if they are a result of the growth kinetics.Comment: 7 pages, 8 figures, submitted to Phys. Rev. B (February 2, 1998).
Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
Elastic Constants of Quantum Solids by Path Integral Simulations
Two methods are proposed to evaluate the second-order elastic constants of
quantum mechanically treated solids. One method is based on path-integral
simulations in the (NVT) ensemble using an estimator for elastic constants. The
other method is based on simulations in the (NpT) ensemble exploiting the
relationship between strain fluctuations and elastic constants. The strengths
and weaknesses of the methods are discussed thoroughly. We show how one can
reduce statistical and systematic errors associated with so-called primitive
estimators. The methods are then applied to solid argon at atmospheric
pressures and solid helium 3 (hcp, fcc, and bcc) under varying pressures. Good
agreement with available experimental data on elastic constants is found for
helium 3. Predictions are made for the thermal expectation value of the kinetic
energy of solid helium 3.Comment: 9 pages doublecolumn, 6 figures, submitted to PR
Galaxy rotation curves: the effect of j x B force
Using the Galaxy as an example, we study the effect of j x B force on the
rotational curves of gas and plasma in galaxies. Acceptable model for the
galactic magnetic field and plausible physical parameters are used to fit the
flat rotational curve for gas and plasma based on the observed baryonic
(visible) matter distribution and j x B force term in the static MHD equation
of motion. We also study the effects of varied strength of the magnetic field,
its pitch angle and length scale on the rotational curves. We show that j x B
force does not play an important role on the plasma dynamics in the
intermediate range of distances 6-12 kpc from the centre, whilst the effect is
sizable for larger r (r > 15 kpc), where it is the most crucial.Comment: Accepted for publication in Astrophysics & Space Science (final
printed version, typos in proofs corrected
- …