39 research outputs found

    Resonances, Chiral Symmetry, Coupled Channel Unitarity and Effective Lagrangians

    Get PDF
    By means of a coupled channel non-perturbative unitary approach, it is possible to extend the strong constrains of Chiral Perturbation Theory to higher energies. In particular, it is possible to reproduce the lowest lying resonances in meson-meson scattering up to 1.2 GeV using the parameters of the O(p^2) and O(p^4) Chiral Lagrangian. We report on an update of these results examining their possible relevance for meson spectroscopy.Comment: To appear in the proceedings of the 8th International Conference on Hadron Spectroscopy, HADROn 99, August 24-28, 1999, Beijing, China. Four pages, uses espcrc1.sty (included

    LHC sensitivity to the resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector

    Get PDF
    We present a unified analysis of the two main production processes of vector boson pairs at the LHC, VV-fusion and qqbar annihilation, in a minimal strongly interacting electroweak symmetry breaking sector. Using a unitarized electroweak chiral Lagrangian formalism and modeling the final V_L V_L strong rescattering effects by a form factor, we describe qqbar annihilation processes in terms of the two chiral parameters that govern elastic V_L V_L scattering. Depending on the values of these two chiral parameters, the unitarized amplitudes may present resonant enhancements in different angular momentum-isospin channels. Scanning this two parameter space, we generate the general resonance spectrum of a minimal strongly interacting electroweak symmetry breaking sector and determine the regions that can be probed at the LHC.Comment: Final version to appear in Phys. Rev. D, including a more detailed exposition and a few more references. Conclusions and results unchanged. 14 pages, 5 figure

    Chiral Perturbation Theory and the f2(1270) resonance

    Get PDF
    Within Chiral Perturbation Theory, we study elastic pion scattering in the I=0, J=2, channel, whose main features are the f2(1270) resonance and the vanishing of the lowest order. By means of a chiral model that includes an explicit resonance coupled to pions, we describe the data and calculate the resonance contribution to the O(p^4) and O(p^6) chiral parameters. We also generalize the Inverse Amplitude Method to higher orders, which allows us to study channels with vanishing lowest order. In particular, we apply it to the I=0,J=2 case, finding a good description of the f2(1270) resonance, as a pole in the second Riemann sheet.Comment: 4 pages,1 figur

    The SU(2) and SU(3) chiral phase transitions within Chiral Perturbation Theory

    Get PDF
    The SU(2) and SU(3) chiral phase transitions in a hot gas made of pions, kaons and etas are studied within the framework of Chiral Perturbation Theory. By using the meson meson scattering phase shifts in a second order virial expansion, we are able to describe the temperature dependence of the quark condensates. We have estimated the critical temperatures where the different condensates melt. In particular, the SU(3) formalism yields a lower critical temperature for the non-strange condensates than within SU(2), and also suggests that the strange condensate may melt at a somewhat higher temperature, due to the different strange and non-strange quark masses.Comment: 4 pages, two figures. Final version to appear in Phys Rev D. Complete model independent calculation. Unitarized ChPt only used to check extrapolation at high T. References added and numerical bug correcte

    Chiral Symmetry and light resonances in hot and dense matter

    Get PDF
    We present a study of the ππ\pi\pi scattering amplitude in the σ\sigma and ρ\rho channels at finite temperature and nuclear density within a chiral unitary framework. Meson resonances are dynamically generated in our approach, which allows us to analyze the behavior of their associated scattering poles when the system is driven towards chiral symmetry restoration. Medium effects are incorporated in three ways: (a) by thermal corrections of the unitarized scattering amplitudes, (b) by finite nuclear density effects associated to a renormalization of the pion decay constant, and complementarily (c) by extending our calculation of the scalar-isoscalar channel to account for finite nuclear density and temperature effects in a microscopic many-body implementation of pion dynamics. Our results are discussed in connection with several phenomenological aspects relevant for nuclear matter and Heavy-Ion Collision experiments, such as ρ\rho mass scaling vs broadening from dilepton spectra and chiral restoration signals in the σ\sigma channel. We also elaborate on the molecular nature of ππ\pi\pi resonances.Comment: 14 pages, 14 figures. Contribution to Hard Probes 2008, Illa de A Toxa, Spain, June 8th-14th 200

    Photoproduction of meson and baryon resonances in a chiral unitary approach

    Get PDF
    By means of a coupled channel non-perturbative unitary approach, it is possible to extend the strong constrains of Chiral Perturbation Theory to higher energies. In particular, it is possible to reproduce the lowest lying resonances in meson-meson scattering up to 1.2 GeV using the parameters of the O(p^2) and O(p^4) Chiral Lagrangian. The meson baryon sector can also be tackled along similar lines. We report on an update of these results showing some examples of photon induced reactions where the techniques have been recently applied.Comment: Contribution to the Erice Summer School of Nuclear Physics, 21th course: Electromagnetic Probes and the Structure of Hadrons and Nuclei September 17th - 25th, 1999, Erice/Sicily/Ital

    Thermal rho and sigma mesons from chiral symmetry and unitarity

    Get PDF
    We study the temperature evolution of the rho and sigma mass and width, using a unitary chiral approach. The one-loop pion-pion scattering amplitude in Chiral Perturbation Theory at finite temperature is unitarized via the Inverse Amplitude Method. Our results predict a clear increase with T of both the rho and sigma widths. The masses decrease slightly for high T, while the rho-pion-pion coupling increases. The rho behavior seems to be favored by experimental results. In the sigma case, it signals chiral symmetry restoration.Comment: 5 pages, 5 figures, revtex. References and brief comments added. Final version to appear in Phys. Rev.

    Chiral dynamics in U(3) unitary chiral perturbation theory

    Get PDF
    We perform a complete one-loop calculation of meson-meson scattering, and of the scalar and pseudoscalar form factors in U(3) chiral perturbation theory with the inclusion of explicit resonance fields. This effective field theory takes into account the low-energy effects of the QCD U_A(1) anomaly explicitly in the dynamics. The calculations are supplied by non-perturbative unitarization techniques that provide the final results for the meson-meson scattering partial waves and the scalar form factors considered. We present thorough analyses on the scattering data, resonance spectroscopy, spectral functions, Weinberg-like sum rules and semi-local duality. The last two requirements establish relations between the scalar spectrum with the pseudoscalar and vector ones, respectively. The Nc extrapolation of the various quantities is studied as well. The fulfillment of all these non-trivial aspects of the QCD dynamics by our results gives a strong support to the emerging picture for the scalar dynamics and its related spectrum.Comment: To match the version accepted by Phys.Lett.

    Recent progress on the chiral unitary approach to meson meson and meson baryon interactions

    Get PDF
    We report on recent progress on the chiral unitary approach, analogous to the effective range expansion in Quantum Mechanics, which is shown to have a much larger convergence radius than ordinary chiral perturbation theory, allowing one to reproduce data for meson meson interaction up to 1.2 GeV. Applications to physical processes so far unsuited for a standard chiral perturbative approach are presented. Results for the extension of these ideas to the meson baryon sector are discussed, together with applications to kaons in a nuclear medium and KK^- atoms.Comment: Contribution to the KEK Tanashi Symposium on Physics of Hadrons and Nuclei, Tokyo, December 1998, 10 pages, 3 postscript figures. To be published as a special issue of Nuclear Physics

    Meson-meson interactions in a nonperturbative chiral approach

    Get PDF
    A non-perturbative method which combines constraints from chiral symmetry breaking and coupled channel unitarity is used to describe the meson-meson interaction up to about 1.2 GeV. The approach uses the O(p^2) and O(p^4) chiral Lagrangians. The seven free parameters of the O(p^4) Lagrangian are fitted to the data. The results are in good agreement with a vast amount of experimental analyses. The amplitudes develop poles in the complex plane corresponding to the f0, a0, rho, K*, phi, sigma and kappa resonances; the latter two, very broad. The total and partial decay widths of the resonances are also well reproduced. Further extensions and applications of this chiral non-perturbative scheme are also discussed
    corecore