
Physics Letters B 712 (2012) 407–412

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at SciVerse ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Chiral dynamics in U (3) unitary chiral perturbation theory

Zhi-Hui Guo a,b,∗, J.A. Oller b, J. Ruiz de Elvira c

a Department of Physics, Hebei Normal University, 050024 Shijiazhuang, PR China
b Departamento de Física, Universidad de Murcia, E-30071 Murcia, Spain
c Departamento de Física Teórica II, Universidad Complutense de Madrid, E-28040 Madrid, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 March 2012
Received in revised form 26 April 2012
Accepted 10 May 2012
Available online 14 May 2012
Editor: B. Grinstein

Keywords:
Chiral perturbation theory
Weinberg sum rules
Semi-local duality
1/NC expansion

We perform a complete one-loop calculation of meson–meson scattering, and of the scalar and
pseudoscalar form factors in U (3) chiral perturbation theory with the inclusion of explicit resonance
fields. This effective field theory takes into account the low-energy effects of the QCD U A(1) anomaly
explicitly in the dynamics. The calculations are supplied by non-perturbative unitarization techniques
that provide the final results for the meson–meson scattering partial waves and the scalar form factors
considered. We present thorough analyses on the scattering data, resonance spectroscopy, spectral
functions, Weinberg-like sum rules and semi-local duality. The last two requirements establish relations
between the scalar spectrum with the pseudoscalar and vector ones, respectively. The NC extrapolation
of the various quantities is studied as well. The fulfillment of all these non-trivial aspects of the QCD
dynamics by our results gives a strong support to the emerging picture for the scalar dynamics and its
related spectrum.

© 2012 Elsevier B.V. Open access under CC BY license.
Chiral symmetry and U A(1) anomaly are two prominent fea-
tures of QCD in the low energy sector. Chiral perturbation theory
(χPT) [1–3] that exhaustively exploits chiral symmetry as well as
its spontaneous and explicit breaking to constrain the dynamics
allowed, has proven as a reliable tool to analyze the QCD low en-
ergy processes involving the octet of pseudo-Goldstone bosons π ,
K and η. On the other hand, the U A(1) anomaly of QCD provides
a natural explanation of the massive state η′ [4]. The consideration
of a variable number of colors (NC ) in QCD is enlightening. An im-
portant finding from large NC QCD [5] is that the U A(1) anomaly
is 1/NC suppressed and thus the η′ meson becomes the ninth
Goldstone boson at large NC in the chiral limit [6]. This poses
strong constraints on the allowed forms of the chiral operators
involving the η′ field, which generalizes the conventional SU(3)

χPT [3] to the U (3) version [4,7,8]. Thus U (3) χPT is a serious
theory to incorporate the η′ as a dynamical degree of freedom in
the chiral effective Lagrangian approach and hence deserves of de-
tailed calculations. Though the one-loop renormalization and con-
struction of the corresponding O(p4) Lagrangian are performed in
Refs. [7,8], further calculations still need to be carried out. Recently
the calculation of the one-loop meson–meson scattering ampli-
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tudes was completed in Ref. [9], and the non-strangeness changing
scalar and pseudoscalar form factors are calculated in the present
work.

Based on the calculated scattering amplitudes and form factors
from U (3) χPT, we then study semi-local duality [10,11] between
Regge theory and the hadronic degrees of freedom (h.d.f.) and con-
struct the spectral functions to investigate the Weinberg-like spec-
tral function sum rules [12] among the scalar and pseudoscalar
correlators. The NC evolution of the resonance poles, semi-local
duality and two-point correlators are also studied. In the physi-
cal case, i.e. NC = 3, the f0(600) resonance (also called σ ) plays
important roles for the fulfillment of both semi-local duality and
the Weinberg-like spectral function sum rules. However, accord-
ing to the study of Ref. [9] that employs a similar approach as
the one used here, when NC increases the f0(600) resonance
evolves deeper in the complex energy plane and barely contributes
at large NC . Interestingly, we find that at large NC the contri-
bution from the singlet scalar resonance S1 with a mass around
1 GeV, that is part of the f0(980) resonance at NC = 3, be-
comes more and more important for larger values of NC . Then,
two markedly different pictures for the scalar dynamics emerge as
a function of NC . For the physical case the f0(600) is the scalar
resonance mainly responsible to counterbalance the vector res-
onance ρ(770) in semi-local duality. It also counterbalances the
contributions from the octet of scalar resonances, the nonet of the
pseudo-Goldstone bosons and also from the lightest multiplet of
pseudoscalar resonances in the Weinberg-like spectral sum rules.
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Fig. 1. Feynman diagrams for the calculations of the scalar (first row) and pseudoscalar (second row) form factors. The wavy lines denote either the scalar or the pseudoscalar
external source. See the text for more details.
However, at large NC the remnant component (a q̄q-like one) of
the f0(980) is responsible for the strength in the scalar dynamics.
Though these two pictures differ dramatically they evolve contin-
uously from one to the other as NC varies. We present the discus-
sions in more detail next.

In the perturbative calculations, we include the tree level ex-
changes of resonances explicitly [13], instead of considering the
local chiral operators from the higher order Lagrangian [7,8]. We
then assume tacitly the saturation by resonance exchange of the
(next-to-leading) chiral counterterms [13]. The relevant Lagrangian
has been presented in detail in Ref. [9]. In addition we also in-
clude the exchange of pseudoscalar resonances here, which are
absent in [9]. Their effects in meson–meson scattering turn out
to be small, but they play a crucial role to establish the Weinberg-
like spectral sum rules for the difference between the scalar–scalar
(SS) and pseudoscalar–pseudoscalar (PP) correlators (SS–PP).

The pseudoscalar resonance Lagrangian introduced in [13] pro-
duces the mixing between the pseudoscalar resonances and the
pseudo-Goldstone bosons. Nevertheless this mixing can be elim-
inated at the Lagrangian level through a chiral covariant redefi-
nition of the resonance fields, which results in two local chiral
operators at the O(p4) level [14]. We remind that the nature of
the pseudoscalar resonances is still a controversial issue and their
parameters are not accurately measured yet [15]. So in order to
compensate the uncertainties on the pseudoscalar resonance prop-
erties, as well as our simple parameterization here in terms of
simple bare propagators in the spirit of the narrow resonance ap-
proach,1 we include an L8-like operator [3].

We show the pertinent Feynman graphs for the scalar form
factors of the pseudo-Goldstone pairs and the pseudoscalar form
factors in the first and second rows of Fig. 1, in order. The scalar
form factor of a pseudo-Goldstone boson pair PQ , F a

PQ (s), is de-
fined as

F a
PQ (s) = 1

B
〈0|Sa|PQ〉, (1)

while the pseudoscalar form factor of the pseudoscalar P , Ha
P (s),

corresponds to

Ha
P (s) = 1

B
〈0|P a|P 〉. (2)

In the equations above the scalar and pseudoscalar currents are
Sa = q̄λaq and P a = iq̄γ5λaq, in order, with λa the Gell-Mann
matrices for a = 1, . . . ,8 and λ0 = I3×3

√
2/3 for a = 0. On the

other hand, B is proportional to the quark condensate in the chiral
limit [9]. In Fig. 1 the wavy lines correspond to either the scalar
or pseudoscalar external sources, the single straight lines to the
pseudo-Goldstone bosons and the double lines to the scalar (S)

1 E.g. see Ref. [16] for a refined treatment of the pseudoscalar resonances as dy-
namically generated resonances from the interactions between the scalar resonances
and the pseudo-Goldstone bosons.
and pseudoscalar (P ) resonances. The cross in diagram (Sd) and
(Pc) indicates the coupling between the scalar resonance and the
vacuum. The dot in the diagrams (Sf) and (Pd) corresponds to the
vertices involving only pseudo-Goldstone bosons beyond the lead-
ing order. They can stem from many sources, such as from the
local terms that originate after removing the mixing between the
pseudo-Goldstone bosons and the pseudoscalar resonances. A de-
tailed account, including explicitly all the relevant expressions, will
be presented in Ref. [14].

In U (3) χPT it is necessary to resum the unitarity loops due to
the large s-quark mass and the large anomaly mass. Consequently,
the pseudo-Goldstone boson thresholds are much larger than the
typical three-momenta in many kinematical regions, which in-
creases the contributions from the reducible two pseudo-Goldstone
boson loops [17]. Moreover, we are also interested in the reso-
nance energy region where the unitarity upper bound in partial
wave amplitudes can be easily reached, so that it does not make
sense to treat unitarity perturbatively as in χPT for these energy
regions. Hence one must resum the unitary cut and we use Uni-
tary χPT (UχPT) to accomplish this resummation. This approach is
based on the N/D method [18] to resum the unitarity chiral loops
both for the partial wave scattering amplitudes and the form fac-
tors. The application of these unitarization techniques to the form
factors is discussed in Refs. [19–21]. The partial waves from U (3)

unitary χPT plus the resonance exchanges at tree level were al-
ready discussed in Ref. [9], we now build the unitarized scalar
form factors in a similar fashion [20]. Our master equation in ma-
trix notation is

F I (s) = [
1 + N I J (s)gI J (s)

]−1
R I (s), (3)

where

R I (s) = F I (s)
(2)+Res+Loop + T I J (s)(2) gI J (s)F I (s)(2). (4)

In the previous equation T I J (s) is a matrix whose elements are
the partial wave scattering amplitudes with definite isospin I and
angular momentum J . We refer to Ref. [9] for details about T I J (s),

N I J (s) and gI J (s). The quantity F I (s)
(2)+Res+Loop

denotes the scalar
form factors of the Goldstone pairs depicted in the first row of
Fig. 1. The superscripts (2), Res and Loop stand for the perturbative
results from the leading order, resonance contributions and chiral
loops, respectively. The vector function R I (s) in Eq. (4) stems from
the perturbative calculations of the form factors and it does not
contain any cut singularity [19,20].

The two-point scalar and pseudoscalar correlators, ΠSa and
ΠPa , respectively, are defined as

δabΠR
(

p2) = i

∫
d4x eip·x〈0|T [

Ra(x)Rb(0)
]|0〉, (5)

with Ra = Sa or P a . After the establishment of the unitarized
scalar form factors in Eq. (3), we are ready to calculate the scalar
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spectral function or the imaginary part of the two-point scalar cor-
relator

Im ΠSa (s) =
∑

i

ρi(s)
∣∣F a

i (s)
∣∣2

θ
(
s − sth

i

)
, (6)

with θ(x) the Heaviside step function. The kinetic space factor
ρi(s) is defined as

ρi(s) =
√[s − (mA + mB)2][s − (mA − mB)2]

16π s
, (7)

where mA , mB are the masses of the two particles in the ith
channel, s is the energy squared in the center of mass frame and
sth

i = (mA + mB)2 denotes the threshold. We focus on the cases
with a = 0, 3 and 8, which conserve strangeness. The values a = 0
and 8 correspond to the isoscalar case I = 0, and there are five
relevant channels: ππ , K K̄ , ηη, ηη′ and η′η′ . For a = 3 one has
the isovector case I = 1 and three channels are involved: πη, K K̄
and πη′ . We adopt the isospin bases and employ the unitarity nor-
malization as used in Ref. [9]. Another important observable that
can be extracted from the scalar form factor is the quadratic pion
scalar radius 〈r2〉πS defined from the Taylor expansion around the
origin of the pion scalar form factor as

F ūu+d̄d
ππ (s) = F ūu+d̄d

ππ (0)

[
1 + 1

6

〈
r2〉π

S s + · · ·
]
, (8)

with

m2
π F ūu+d̄d

ππ (s) ≡ 2Bm〈0|ūu + d̄d|ππ〉

= 2Bm

[
F a=8
ππ (s)√

3
+

√
2F a=0

ππ (s)√
3

]
, (9)

where m is the up or down current quark mass (isospin breaking
is not considered in this work).

The pseudoscalar spectral function is related to the pseu-
doscalar form factors, Ha

P (s), depicted in the second row of Fig. 1,
by

Im ΠPa (s) =
∑

i

πδ
(
s − m2

Pi

)∣∣Ha
i (s)

∣∣2
, (10)

where we do not consider multiple-particle intermediate states. In
the above equation δ(x) stands for the Dirac δ function, mPi cor-
responds to the masses of the pseudo-Goldstone bosons or the
pseudoscalar resonances with the same quantum numbers as the
considered spectral function.

Another interesting object that we study is the so-called semi-
local (or average) duality in scattering [10,11]. We quantify semi-
local duality in ππ scattering between the Regge theory and h.d.f.,
by employing the useful ratio between the amplitudes with well-
defined I in the t-channel, as proposed in [11],

F I I ′
n =

∫ νmax
ν1

ν−n Im T (I)
t (ν, t)dν∫ νmax

ν1
ν−n Im T (I ′)

t (ν, t)dν
. (11)

In this equation the isospin is indicated by the superscript and

ν = s−u
2 = 2s+t−4m2

π
2 , with s, t and u the standard Mandelstam

variables. The relations between the t-channel well-defined isospin
amplitudes, T (I)

t (s, t), and those with well-defined isospin in the s-

channel, T (I)
s (s, t), are [10]

T (0)
t (s, t) = 1

3
T (0)

s (s, t) + T (1)
s (s, t) + 5

3
T (2)

s (s, t),

T (1)
t (s, t) = 1

3
T (0)

s (s, t) + 1

2
T (1)

s (s, t) − 5

6
T (2)

s (s, t),

T (2)
t (s, t) = 1

T (0)
s (s, t) − 1

T (1)
s (s, t) + 1

T (2)
s (s, t). (12)
3 2 6
Since Regge exchange is highly suppressed for the exotic I = 2 case
in the t-channel, Regge theory predicts a vanishing value for the
ratios F 21

n and F 20
n . In the following we shall focus on the ratio

F 21
n to test semi-local duality in order to make a close comparison

with Ref. [11]. We study the scattering for two values of t , t = 0
(forward scattering) and t = 4m2

π , in order to test the stability of
the results for different small values of t compared with GeV2. The
lower integration limit ν1 is always set to the threshold point and
we concentrate on the energy region with νmax = 2 GeV2 for the
ratio in Eq. (11). To calculate in Eq. (12) the imaginary parts of the
t-channel well-defined isospin amplitudes, Im T (I)

t (s, t), we need to

know Im T (I)
s (s, t), which can be decomposed in the center of mass

frame in a partial wave expansion as

Im T (I)
s (ν, t) =

∑
J

(2 J + 1) Im T I J (s)P J (zs), (13)

with zs = 1 + 2t/(s − 4m2
π ), the cosine of the scattering angle, and

P J (zs) the Legendre polynomials. The partial waves T I J (s) were
already carefully studied in Ref. [9] within U (3) unitary χPT, and
we extend the results there by including the contributions from
the exchange of the pseudoscalar resonances.

We point out that all the parameters entering the form fac-
tors also appear in the unitarized scattering amplitudes and in
the expressions for the masses of the pseudo-Goldstone bosons.
Hence, once the unknown parameters are determined by the fit
to scattering data and the pseudo-Goldstone masses, we can com-
pletely predict the form factors and spectral functions. By using
the best fit in Eq. (55) of Ref. [9] for the calculation of the pion
scalar form factor, a small quadratic pion scalar radius is obtained
〈r2〉πS = 0.43 fm2, which is around 30% less than the dispersive re-
sult 0.61 fm2 in [22]. One way to improve the pion scalar radius is
to increase the value of L5 [3]. It is found in Ref. [23] that a second
multiplet of scalar resonances around 2 GeV contributes around
50% of L5. Thus, we shall include this second scalar multiplet in
our analysis and we take the values for its resonance parameters
from the preferred fit Eq. (6.10) of Ref. [23]. The inclusion of this
second scalar nonet and of the pseudoscalar resonance exchanges
requires to perform a new fit. The resulting quality of the new fit
and also the resonance spectroscopy, which will be given in detail
in Ref. [14], are quite similar to the ones of Ref. [9], so we re-
frain from discussing them further here. But the new fit improves
the pion scalar radius to 0.49+0.01

−0.03 fm2, being around a 14% larger
than the result from the best fit of Ref. [9].

Let us consider other interesting consequences of the new fit.
As we commented previously, an important advantage of U (3)

χPT, compared with the SU(2) or SU(3) versions, is that it incor-
porates the singlet η1 that becomes the ninth Goldstone boson at
large NC in the chiral limit and thus U (3) χPT is more adequate
to discuss the large NC dynamics. The leading order NC scaling
for the various parameters in our theory was already given in [9].
For the pion decay constant Fπ , we always take both the lead-
ing and sub-leading NC terms which were calculated in Ref. [9]
at the one-loop level in U (3) χPT. In addition to only including
the leading NC behavior for the remaining parameters, referred as
Scenario 1, we also consider other three scenarios that include sub-
leading NC scaling for the resonance parameters. Through the fit
to experimental data, we determine the values of the parameters
at NC = 3. By imposing short distance constraints, the resonance
parameters that then result at large NC are already discussed in
many contexts [24–27]. Among these constraints, we take the one
from the vector resonance sector, which should be quite reliable
due to the well established ρ(770) q̄q-like resonance at large NC .
An updated version of the constraint on G V , a coupling describing
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Table 1
Description of Scenarios 1–4. In the second and third columns the symbol

√
(–)

denotes that the sub-leading NC scaling for the corresponding parameters is (not)
considered. In the last column, the symbol

√
(–) means that we do (not) consider

the contribution from the D-waves.

G V Mρ , MS1 D-wave

Scenario 1 – – –
Scenario 2

√
– –

Scenario 3
√ √

–
Scenario 4

√ √ √

the vertices of the ρ(770) with pions, is revealed in many recent
works [25–27,9] as

G V = F√
3
, (14)

with F the pion decay constant at large NC . The extrapolation
function for G V is uniquely fixed if one considers contributions
up to and including next-to-leading order in the large NC expan-
sion and requires G V to take the value given by the fit at NC = 3
and the result in Eq. (14) at large NC . We present the detailed
expressions in Ref. [14]. We refer the situation including the sub-
leading piece for G V as Scenario 2. In Scenario 3, on top of the
setups in Scenario 2, we impose that Mρ and M S1 approach to the
same value at large NC , which can be realized naturally by tuning
the corresponding parameters at the level of 16% from the values
at NC = 3. While in Scenario 4, we keep all the constraints from
Scenario 3 and include the tensor resonances, which are the dom-
inant contributions to the D-wave amplitudes. We follow Ref. [28]
to include the tensor resonances in meson–meson scattering and
also take the numerical value for the tensor coupling as deter-
mined there. The explicit calculation will be also given in detail
in Ref. [14]. The characteristics of the different scenarios consid-
ered are summarized in Table 1. As proposed in Ref. [11], F 21

n with
n = 0,1,2 and 3 are the relevant ratios in our considered energy
region. We show the NC evolution of the ratio F 21

n from Eq. (11)
in Fig. 2 for n = 0 and 3. And more details for n = 1 and 2 will be
given in Ref. [14].

Notice that if the required cancellations between the I = 0 and
I = 1 partial wave amplitudes in Eq. (12) did not take place for
T (2)

t (s, t), as they are required by Regge exchange theory, the nat-
ural value for |F 21

n | would be around 1. While if the semi-local
duality is satisfied, |F 21

n | should approach to zero. So we conclude
that Scenario 3 is the best one of the four situations. The main
problem in Scenario 4 is that the tensor resonances give too large
contributions and overbalance the ρ(770) resonance for n = 0. This
seems to indicate that once the tensor resonances are included,
heavier vector resonances are needed so as to fulfill better semi-
local duality for n = 0. A remarkably valuable information that
we can get from the study of semi-local duality is its capacity to
distinguish clearly between the different scenarios proposed and
hence it provides a tight constraint on the NC evolution of the
resonance parameters. In the following we shall only focus on the
NC running within Scenario 3, since it is the one that satisfies best
semi-local duality.

Now, we study the Weinberg-like spectral sum rules in the
scalar and pseudoscalar sectors, which are given by

s0∫
0

[
Im ΠR(s) − Im ΠR ′(s)

]
ds

+
∞∫

s0

[
ImΠR(s) − Im ΠR ′(s)

]
ds = 0, (15)

where R, R ′ = Sa or P a , with a = 0,8,3. With a proper choice
of s0, we can calculate the first integral employing the results from
the present study in the non-perturbative region and use the re-
sults from the operator product expansion (OPE) to calculate the
second one. According to the OPE study of Ref. [29] the different
spectral functions considered here are equal in the asymptotic re-
gion in the chiral limit.2 As a result the second integral in Eq. (15)
is zero and to test how well the Weinberg-like spectral function
sum rules hold reduces to the evaluation of the first integral in
Eq. (15) in the energy region below

√
s0. The relevant spectral

functions ImΠR are calculated through Eq. (6) for the scalar case
and from Eq. (10) for the pseudoscalar one. To study the depen-
dences of the first integral in Eq. (15) with s0, we try three values
of s0, namely, s0 = 2.5, 3.0 and 3.5 GeV2 and we confirm that the
results are quite stable for the different values taken. In order to
display the results in a more compact way, we show the value of
the integral separately for each spectral function

W i = 16π

s0∫
0

Im Πi(s)ds, i = S8, S0, S3, P 0, P 8, P 3, (16)

instead of the differences between the various correlators. We
show the results for W i × 3/NC in Fig. 3 at the physical point and
also their NC evolution in the chiral limit. In order to study W i
in the chiral limit, we need to perform the chiral extrapolation.
Though the resonance parameters are independent on the quark
masses, the subtraction constants introduced through the unita-
rization procedure depend on them. Indeed it is shown in Ref. [30]

2 The calculation in Ref. [29] is done up to O(αs) and including up to dimension
5 operators.
Fig. 2. Evolution of F 21
n (t = 4m2

π ) from NC = 3 to 30 for the four scenarios considered. See the text and Table 1 for the meaning of each scenario. We verify that the ratios
evaluated at t = 0 are similar.
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Fig. 3. W i × 3/NC as a function of NC within Scenario 3. All of the results are calculated by setting the upper limit of the integral in Eq. (16) to s0 = 3 GeV2. We check that
the results with s0 = 2.5 GeV2 and s0 = 3.5 GeV2 are quite similar.

Fig. 4. Pole trajectories as a function of NC for the resonances f0(600) and f0(980). We show the results from NC = 3 to 30 in one unit step.
that in the SU(3) limit case (as in the chiral limit) all of them
should be the same for any PQ pair involving the π , K and η8
pseudoscalars. Indeed, we find that in the chiral limit there ex-
ists a reasonable region for a common value of all the subtraction
constants where the values of the two-point correlators are stable
and Weinberg sum rules are improved comparing with the physi-
cal situation. This region includes values similar to the ones fitted.
In Fig. 3, we show the typical result in this region and normal-
ize by the factor 3/NC because W i scales as NC , as it is also clear
from the results plotted in the figure. Focusing on the points at
the chiral limit case in Fig. 3, the relative variance among the six
numbers, i.e. the square root of the variance divided by their mean
value [14], is found to be 10%, implying that the Weinberg-like
spectral function sum rules in the SS–SS, PP–PP and SS–PP sec-
tors hold quite accurately. The fulfillment of these sum rules even
improves at large NC and the relative variance reduces to 5% for
NC = 30.

Up to now, we have shown that our formalism can simulta-
neously fulfill semi-local duality between the Regge theory and
h.d.f. and the Weinberg-like spectral function sum rules both for
the physical case and large values of NC . Of course this success
is based on the fact that we properly take the NC scaling for the
resonance parameters dictated by the short distance constraint. It
is interesting to de-construct the ratio F 21

n and the Weinberg-like
spectral sum rules to see how different resonances contribute to
them. At the physical case, we obtain the spectroscopy for various
resonances, such as f0(600), f0(980), f0(1370), a0(980), a0(1450),
K ∗

0 (800) (also called κ ), K ∗
0 (1430), ρ(770), K ∗(892) and φ(1020),

and they agree quite well with their properties reported in the
PDG [15]. Taking F 21

3 as an example, we observe an interesting in-
terplay between the f0(600) and f0(980) resonances in the NC

evolution. In Fig. 4, we show the NC trajectories for the f0(600)

and f0(980), from left to right, respectively. More details about
the other resonances will be displayed elsewhere [14]. For the
physical situation, both f0(600) and ρ(770) give important contri-
butions to F 21

3 , which leads to a significant cancellation between
each other, that is necessary in order to guarantee semi-local du-
ality. While the f0(980) only plays a marginal role. But when NC

increases, the f0(600) pole as shown in Fig. 4 and in Ref. [9], blows
up in the complex energy plane and does not play any significant
role at large NC . In contrast, the ρ(770) resonance falls down to
the real axis [31,9], behaving as a standard q̄q-like resonance at
large NC , and definitely contributes to the ratio F 21

3 . The scalar
strength to cancel the contribution from the ρ(770) comes now
from the f0(980) resonance, which gradually evolves to the singlet
scalar q̄q-like S1 when increasing NC .

It is also worth comparing our results with those from the pre-
vious works [11,31,32] based on the use of the Inverse Amplitude
Method [33]. The NC trajectories shown in Fig. 4, confirm again
the results obtained in [31,32] which predict a non-dominant q̄q
behavior for the f0(600). The latter was explained in terms of
different kind of resonances in Ref. [34]. Note that the f0(600) be-
havior in Fig. 4, moving towards lower masses and larger widths,
was found in Refs. [11,35] by varying the renormalization scale
where the NC scaling of the χPT low energy constants applies.
Let us remark that, as it happens in Ref. [11], in order to satisfy
semi-local duality, we also need a q̄q component around 1 GeV.
However, this work presents an alternative to Refs. [32,11] because
at NC = 3 such a q̄q component would belong to the f0(980) in-
stead to the f0(600).

Large cancellations are also required to satisfy the Weinberg-
like spectral function sum rules. For the physical case, the sin-
glet correlator W S0 receives important contributions both from
the f0(600) and f0(980). The octet W S8 mainly gets contribution
from the f0(1370) resonance and is also slightly contributed by
the f0(600) and f0(980). For W S3 , the a0(980) peak dominates its
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spectral function, though it receives non-negligible contributions
from the a0(1450). However at large NC , the a0(980) resonance
goes deep in the complex energy plane, like the f0(600) for the
isoscalar case, and hence it does not contribute to W S3 any more.
Instead, the a0(1450) becomes more important when increasing
NC and finally matches the contributions from the f0(980) in the
singlet correlator W S0 and f0(1370) in W S8 , so that the Weinberg-
like spectral function sum rules at large NC are well satisfied.

Finally, we summarize briefly our work. We perform a complete
one-loop calculation of the scalar and pseudoscalar form factors
within U (3) unitary χPT, including the tree-level exchange of res-
onances. The spectral functions of the two-point correlators are
constructed by using the resulting form factors (which are uni-
tarized for the case of the scalar ones). After updating the fit in
Ref. [9], which is also extended by including the explicit exchange
of pseudoscalar resonances, we study the resonance spectroscopy,
quadratic pion scalar radius, and the fulfillment of semi-local dual-
ity and the Weinberg-like spectral function sum rules in the SS–SS,
PP–PP and SS–PP cases, which are well satisfied. We show that
it is important to take under consideration the high energy con-
straint for G V , Eq. (14), in order to keep semi-local duality when
varying NC . An interesting interplay between different resonances
when studying the NC evolution of semi-local duality and the
Weinberg-like spectral sum rules is revealed. In the former case
the scalar and vector spectra appear tightly related and in the lat-
ter one the same can be stated for the scalar and pseudoscalar
ones.

The idea to study the Weinberg sum rules in U (3) χPT was
brought up by our colleague J. Prades, who unfortunately passed
away. We would like to express our gratitude to his help in
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