62 research outputs found
RAPD PCR detects co-colonisation of multiple Group B Streptococcus genotypes: a practical molecular technique for screening multiple colonies
Group B Streptococcus (GBS) is a leading cause of neonatal meningitis, pneumonia, and sepsis. The biggest contributing factor of neonatal infections is due to vertical transmission from maternal colonisation of GBS in the genitourinary tract. Multiple serotype colonisation is often not investigated in epidemiological studies, but it is an important consideration for serotype-based vaccine development and implementation to ensure less abundant serotypes are not under-represented. In this study, we show that RAPD PCR is a quick tool useful in screening the presence of genetically different strains using multiple colony picks from a single patient swab. We observed a maximum of five different GBS strains colonising a single patient at a specific time
Group B Streptococcus vaccine development: present status and future considerations, with emphasis on perspectives for low and middle income countries.
Globally, group B Streptococcus (GBS) remains the leading cause of sepsis and meningitis in young infants, with its greatest burden in the first 90 days of life. Intrapartum antibiotic prophylaxis (IAP) for women at risk of transmitting GBS to their newborns has been effective in reducing, but not eliminating, the young infant GBS disease burden in many high income countries. However, identification of women at risk and administration of IAP is very difficult in many low and middle income country (LMIC) settings, and is not possible for home deliveries. Immunization of pregnant women with a GBS vaccine represents an alternate pathway to protecting newborns from GBS disease, through the transplacental antibody transfer to the fetus in utero. This approach to prevent GBS disease in young infants is currently under development, and is approaching late stage clinical evaluation. This manuscript includes a review of the natural history of the disease, global disease burden estimates, diagnosis and existing control options in different settings, the biological rationale for a vaccine including previous supportive studies, analysis of current candidates in development, possible correlates of protection and current status of immunogenicity assays. Future potential vaccine development pathways to licensure and use in LMICs, trial design and implementation options are discussed, with the objective to provide a basis for reflection, rather than recommendations
Group B Streptococcus (GBS) colonization is dynamic over time, whilst GBS capsular polysaccharides-specific antibody remains stable
Group B Streptococcus (GBS) is a leading cause of adverse pregnancy outcomes due to invasive infection. This study investigated longitudinal variation in GBS rectovaginal colonization, serum and vaginal GBS capsular polysaccharide (CPS)-specific antibody levels. Non-pregnant women were recruited in the UK and were sampled every 2 weeks over a 12-week period. GBS isolates were taken from recto-vaginal swabs and serotyped by polymerase chain reaction. Serum and vaginal immunoglobulin G (IgG) and nasal immunoglobulin A (IgA) specific to CPS were measured by Luminex, and total IgG/A by ELISA. Seventy women were enrolled, of median age 26. Out of the 66 participants who completed at least three visits: 14/47 (29.8%) women that were GBS negative at screening became positive in follow-up visits and 16/19 (84.2%) women who were GBS positive at screening became negative. There was 50% probability of becoming negative 36 days after the first positive swab. The rate of detectable GBS carriage fluctuated over time, although serum, vaginal, and nasal CPS-specific antibody levels remained constant. Levels of CPS-specific antibodies were higher in the serum of individuals colonized with GBS than in non-colonized, but similar in the vaginal and nasal mucosa. We found correlations between antibody levels in serum and the vaginal and nasal mucosa. Our study demonstrates the feasibility of elution methods to retrieve vaginal and nasal antibodies, and the optimization of immunoassays to measure GBS-CPS-specific antibodies. The difference between the dynamics of colonization and antibody response is interesting and further investigation is required for vaccine development
Recommended from our members
SARS-CoV-2 seroprevalence in pregnant women in Kilifi, Kenya from March 2020 to March 2022
Background: Seroprevalence studies are an alternative approach to estimating the extent of transmission of SARS-CoV-2 and the evolution of the pandemic in different geographical settings. We aimed to determine the SARS-CoV-2 seroprevalence from March 2020 to March 2022 in a rural and urban setting in Kilifi County, Kenya.
Methods: We obtained representative random samples of stored serum from a pregnancy cohort study for the period March 2020 to March 2022 and tested for antibodies against the spike protein using a qualitative SARS-CoV-2 ELISA kit (Wantai, total antibodies). All positive samples were retested for anti-SARS-CoV-2 anti-nucleocapsid antibodies (Euroimmun, ELISA kits, NCP, qualitative, IgG) and anti-spike protein antibodies (Euroimmun, ELISA kits, QuantiVac; quantitative, IgG).
Results: A total of 2,495 (of 4,703 available) samples were tested. There was an overall trend of increasing seropositivity from a low of 0% [95% CI 0–0.06] in March 2020 to a high of 89.4% [95% CI 83.36–93.82] in Feb 2022. Of the Wantai test-positive samples, 59.7% [95% CI 57.06–62.34] tested positive by the Euroimmun anti-SARS-CoV-2 NCP test and 37.4% [95% CI 34.83–40.04] tested positive by the Euroimmun anti-SARS-CoV-2 QuantiVac test. No differences were observed between the urban and rural hospital but villages adjacent to the major highway traversing the study area had a higher seroprevalence.
Conclusion: Anti-SARS-CoV-2 seroprevalence rose rapidly, with most of the population exposed to SARS-CoV-2 within 23 months of the first cases. The high cumulative seroprevalence suggests greater population exposure to SARS-CoV-2 than that reported from surveillance data
Recommended from our members
Antibody in Breastmilk Following Pertussis Vaccination in Three-time Windows in Pregnancy.
BACKGROUND: Pertussis-containing vaccines are routinely offered in the UK at 16-32 weeks of gestation and have been shown to be safe and effective, but there remains debate about the best timing for vaccination. Most research into this has focused on serologic immunity, but breastmilk is also important in infant immunity, and the amount of IgA in breastmilk may impact mucosal immunity. It is important to understand if the timing of vaccination in pregnancy affects the concentration of IgA in breastmilk. METHODS: Participants recruited as part of the MAMA (Maternal Antibody in Milk After Vaccination) and OpTIMUM (Optimizing the Timing of Whooping Cough Immunisations in Mums) trials received a pertussis-containing vaccine during pregnancy, either before 24 weeks, between 24 and 27+6 weeks or between 28 and 31+6 weeks. Samples of colostrum within 24 hours of delivery and breastmilk at 14 days were collected. Pertussis toxin, pertactin, tetanus toxoid and diphtheria toxoid specific-IgA levels were measured using a multiplex immunoassay. RESULTS: There was no difference in specific IgA levels against pertussis toxin, pertactin, tetanus toxoid and diphtheria toxoid between the groups vaccinated within different time periods. For all antigens, there was decay in antigen-specific IgA levels between colostrum and breastmilk at 14 days. CONCLUSION: Our results suggest that the timing of administration of a pertussis-containing vaccine in pregnancy does not impact on antigen-specific IgA concentration in colostrum or breastmilk at 14 days
Central modulation in cluster headache patients treated with occipital nerve stimulation: an FDG-PET study
Peer reviewe
Antibody in breastmilk following Pertussis vaccination in three-time windows in pregnancy
Background: Pertussis-containing vaccines are routinely offered in the UK at 16-32 weeks of gestation and have been shown to be safe and effective, but there remains debate about the best timing for vaccination. Most research into this has focused on serologic immunity, but breastmilk is also important in infant immunity, and the amount of IgA in breastmilk may impact mucosal immunity. It is important to understand if the timing of vaccination in pregnancy affects the concentration of IgA in breastmilk.
Methods: Participants recruited as part of the MAMA (Maternal Antibody in Milk After Vaccination) and OpTIMUM (Optimizing the Timing of Whooping Cough Immunisations in Mums) trials received a pertussis-containing vaccine during pregnancy, either before 24 weeks, between 24 and 27+6 weeks or between 28 and 31+6 weeks. Samples of colostrum within 24 hours of delivery and breastmilk at 14 days were collected. Pertussis toxin, pertactin, tetanus toxoid and diphtheria toxoid specific-IgA levels were measured using a multiplex immunoassay.
Results: There was no difference in specific IgA levels against pertussis toxin, pertactin, tetanus toxoid and diphtheria toxoid between the groups vaccinated within different time periods. For all antigens, there was decay in antigen-specific IgA levels between colostrum and breastmilk at 14 days.
Conclusion: Our results suggest that the timing of administration of a pertussis-containing vaccine in pregnancy does not impact on antigen-specific IgA concentration in colostrum or breastmilk at 14 days
A mouse model reproducing the pathophysiology of neonatal group B streptococcal infection
Group B streptococcal (GBS) meningitis remains a devastating disease. The absence of an animal model reproducing the natural infectious process has limited our understanding of the disease and, consequently, delayed the development of effective treatments. We describe here a mouse model in which bacteria are transmitted to the offspring from vaginally colonised pregnant females, the natural route of infection. We show that GBS strain BM110, belonging to the CC17 clonal complex, is more virulent in this vertical transmission model than the isogenic mutant BM110∆cylE, which is deprived of hemolysin/cytolysin. Pups exposed to the more virulent strain exhibit higher mortality rates and lung inflammation than those exposed to the attenuated strain. Moreover, pups that survive to BM110 infection present neurological developmental disability, revealed by impaired learning performance and memory in adulthood. The use of this new mouse model, that reproduces key steps of GBS infection in newborns, will promote a better understanding of the physiopathology of GBS-induced meningitis.The authors gratefully acknowledge the help of Encarnaca̧ ̃o Ribeiro for excellent technical assistance, Joana Tavares for assisting with IVIS Lumina LT, Susana Roque for the
luminex instrument experiments, the Molecular Microbiology group at i3S for microscope use, and the Portuguese architect and artist Gil Ferreira da Silva for the artworks
included in the last figure. This work was supported by funds from Foundation for
Science and Technology (FCT), European Regional Development Fund (FEDER) and
Compete under project POCI-01-0145-FEDER-016607 (PTDC/IMI-MIC/1049/2014)
and from the project NORTE-01-0145-FEDER-000012, supported by Norte Portugal
Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). T.S.
and A.M. were supported by Investigador FCT (IF/00875/2012 and IF/00753/2014),
POPH and Fundo Social Europeu. E.B.A. and C.C.P. hold postdoctoral fellowships from
FCT (PTDC/IMI-MIC/1049/2014 and SFRH/BPD/91962/2012). Ar.F. and P.T.C. were
supported by Laboratoire d’Excellence (LABEX) Integrative Biology of Emerging Infectious Diseases (grant ANR-10-LABX-62-IBEID).info:eu-repo/semantics/publishedVersio
Recommended from our members
Maternal and Placental Antibody Responses in SARS-CoV-2 Vaccination and Natural Infection During Pregnancy.
BACKGROUND: As COVID-19 becomes endemic, understanding antibody response and transfer during pregnancy is crucial to inform policy and vaccination schedules. While good immunogenicity has been shown from SARS-CoV-2 vaccines, few data are available demonstrating functional responses in pregnant populations and infants. METHODS: A prospective, multi-site observational study was completed across 14 centers in England from April 23, 2020, to December 21, 2022. Demographic, COVID infection and vaccination data were collected. Maternal and cord blood samples were taken at delivery, with maternal and neonatal blood samples taken at 6 weeks for participants who had been infected or vaccinated. Antibody concentrations were measured using antibody-dependent complement deposition, antibody-dependent neutrophil phagocytosis, ACE2 inhibition and Roche and EuroImmun antibody binding assays at the UK Health Security Agency. RESULTS: Maternal vaccination and infection both produced an antibody response in 100% of mothers and 93.8% and 92.9% of neonates, respectively, which persisted at 6 weeks in 95%. The strongest response was seen in mothers who were both vaccinated and infected. Anti-spike antibody response decreased almost 25-fold from first to third trimester vaccination (P=0.013). Placental transfer of antibodies post-infection showed varied results depending on the assay used, with higher transfer ratios observed in assays measuring Fc-mediated antibody effector functions and IgG-specific responses. CONCLUSIONS: Maternal vaccination is associated with good immunogenicity and successful antibody transfer to the neonate, particularly with vaccination in early pregnancy. Further study is needed to determine the mechanism by which the timing of vaccination affects antibody transfer. When measuring placental transfer of antibodies, consideration of the assay to use is essential
Changes in preterm birth and stillbirth during COVID-19 lockdowns in 26 countries
Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from −90% to +30%, were reported in many countries following early COVID-19 pandemic response measures (‘lockdowns’). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95–0.98, P value <0.0001), second (0.96, 0.92–0.99, 0.03) and third (0.97, 0.94–1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96–1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88–1.14, 0.98), third (0.99, 0.88–1.12, 0.89) and fourth (1.01, 0.87–1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02–1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03–1.15, 0.002), third (1.10, 1.03–1.17, 0.003) and fourth (1.12, 1.05–1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways
- …
