40 research outputs found

    Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis

    Get PDF
    Due to the importance of chitinolytic enzymes for insect, nematode and fungal growth, they are receiving attention concerning their development as biopesticides or chemical defense proteins in transgenic plants and as microbial biocontrol agents. Targeting chitin associated with the extracellular matrices or cell wall by insect chitinases may be an effective approach for controlling pest insects and pathogenic fungi. The ability of chitinases to attack and digest chitin in the peritrophic matrix or exoskeleton raises the possibility to use them as insect control method. In this study, an insect chitinase cDNA from cotton leaf worm (Spodoptera littoralis) has been synthesized. Transgenic maize plant system was used to improve its tolerance against insects. Insect chitinase transcripts and proteins were expressed in transgenic maize plants. The functional integrity and expression of chitinase in progenies of the transgenic plants were confirmed by insect bioassays. The bioassays using transgenic corn plants against corn borer (Sesamia cretica) revealed that ~50% of the insects reared on transgenic corn plants died, suggesting that transgenic maize plants have enhanced resistance against S. cretica

    Co-application of ACC deaminase-producing rhizobial bacteria and melatonin improves salt tolerance in common bean (Phaseolus vulgaris L.) through ion homeostasis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).A comprehensive body of scientific evidence indicates that rhizobial bacteria and melatonin enhance salt tolerance of crop plants. The overall goal of this research was to evaluate the ability of Rhizobium leguminoserum bv phaseoli to suppress salinity stress impacts in common bean treated with melatonin. Treatments included bacterial inoculations (inoculated (RI) and non-inoculated (NI)), different salinity levels (non-saline (NS), 4 (S1) and 8 (S2) dS m−1 of NaCl) and priming (dry (PD), melatonin (PM100) and hydro (PH) priming) with six replications in growing media containing sterile sand and perlite (1:1). The results showed that the bacterial strain had the ability to produce indole acetic acid (IAA), ACC deaminase and siderophore. Plants exposed to salinity stress indicated a significant decline in growth, yield, yield components, nitrogen fixation and selective transport (ST), while showed a significant increase in sodium uptake. However, the combination of PM100 and RI treatments by improving growth, photosynthesis rate and nitrogen fixation positively influenced plant performance in saline conditions. The combined treatment declined the negative impacts of salinity by improving the potassium translocation, potassium to sodium ratio in the shoot and root and ST. In conclusion, the combination of melatonin and ACC deaminase producing rhizobium mitigated the negative effects of salinity. This result is attributed to the increased ST and decreased sodium uptake, which significantly reduced the accumulation of sodium ions in shoot.Peer reviewe

    Berberine Reduces Neurotoxicity Related to Nonalcoholic Steatohepatitis in Rats

    Get PDF
    Berberine is a plant alkaloid that has several pharmacological effects such as antioxidant, antilipidemic, and anti-inflammatory effects. Nonalcoholic steatohepatitis (NASH) triggers different aspects of disorders such as impaired endogenous lipid metabolism, hypercholesterolemia, oxidative stress, and neurotoxicity. In this study, we examined the mechanism by which NASH induces neurotoxicity and the protective effect of berberine against both NASH and its associated neurotoxicity. NASH induced rats showed significant impairments in lipid metabolism with increased serum triglycerides, cholesterol, and low-density lipoprotein (LDL). The NASH induced group also demonstrated a significant oxidative stress which is characterized by increased TBARs level and decreased antioxidant capacity such as GSH and SOD levels. Moreover, the NASH induction was associated with inflammation which was demonstrated by increased TNFα and nitric oxide levels. Hyperglycemia and hyperinsulinemia were observed in the NASH induced group. Also, our results showed a significant increase in the expression of the acetylcholine esterase (AChE) and amyloid beta precursor protein (AβPP). These changes were significantly correlated with decreased insulin degrading enzyme (IDE) and beta-amyloid40 (Aβ40) and increased beta-amyloid42 (Aβ42) in the hippocampal region. Daily administration of berberine (50 mg/kg) for three weeks ameliorated oxidative stress, inflammation, hyperlipidemia, hyperglycemia, hyperinsulinemia, and the observed neurotoxicity

    In Vivo Investigation of the Ameliorating Effect of Copper Albumin Complex on chondroitin sulfate in Monosodium iodoacetate -Induced Knee Osteoarthritis

    Get PDF
    Osteoarthritis (OA) is a condition that manifests as cartilage deterioration and subchondral bone sclerosis in the joint tissues. The weight-bearing joint is most severely impacted by OA. According to some research, consuming foods high in copper albumin complex (cu-albumin complex) can help with OA-related joint degeneration and pain relief. The current study's objective to determine how oral administration of the cu-albumin complex as an anti-inflammatory medication affected the development of rat knee osteoarthritis (KOA). Fifty adult albino rats were divided into three groups: negative control untreated (n= 10, no KOA induction); positive untreated control (n= 20, KOA induction); and treated group (n= 20, KOA induction with administration of cu-albumin complex). According to the severity of the clinical symptoms, treated and untreated arthritic groups were equally divided into mild and severe groups (n=10). Monosodium iodoacetate (MIA) was used as intra-articular injection for osteoarthritis induction. Rats were euthanized after a month of the beginning of the experiment, and the joints were examined histopathologically and immunohistochemically. It was indicated that the treatment was effective in reducing KOA severity and in improvement of chondroitin sulfate of the affected cartilages. In conclusion, the structure of the chondroitin sulphate in the knee joint cartilages of KOA-affected rats was modified by the cu-albumin complex

    The Ameliorating Effect of Berberine-Rich Fraction against Gossypol-Induced Testicular Inflammation and Oxidative Stress

    No full text
    This study was aimed at evaluating the efficacy of berberine-rich fraction (BF) as a protective and/or a therapeutic agent against inflammation and oxidative stress during male infertility. Sexually mature Sprague-Dawley male rats were divided into five groups treated with either corn oil, BF (100 mg/kg BW, orally, daily for 30 days), gossypol acetate (5 mg/kg BW, i.p.) eight times for 16 days, BF alone for 14 days then coadministered with gossypol acetate for the next 16 days (protected group), or gossypol acetate for 16 days then treated with BF for 30 days (treated group). All animals completed the experimental period (46 days) without obtaining any treatments in the gap period. Sperm parameters, oxidative index, and inflammatory markers were measured. Gossypol injection significantly decreased the semen quality and testosterone level that resulted from the elevation of testicular reactive oxygen and nitrogen species (TBARS and NO), TNF-α, TNF-α-converting enzyme, and interleukins (IL-1β, IL-6, and IL-18) by 230, 180, 12.5, 97.9, and 300%, respectively, while interleukin-12 and tissue inhibitors of metalloproteinases-3 were significantly decreased by 59 and 66%, respectively. BF (protected and treated groups) significantly improved the semen quality, oxidative stress, and inflammation associated with male infertility. It is suitable to use more advanced studies to validate these findings

    The interrelationship between insulin resistane and Alzheimer development

    No full text

    The Synergetic Effect of Egyptian <i>Portulaca oleracea</i> L. (Purslane) and <i>Cichorium intybus</i> L. (Chicory) Extracts against Glucocorticoid-Induced Testicular Toxicity in Rats through Attenuation of Oxidative Reactions and Autophagy

    No full text
    Long-term glucocorticoids can alter sperm motility, vitality, or morphology, disrupting male reproductive function. This study scrutinized the synergistic benefits of two Egyptian plants against dexamethasone (Dexa)-induced testicular and autophagy dysfunction in male rats. Phytochemical ingredients and the combination index were estimated for Purslane ethanolic extract (PEE) and Chicory water extract (CWE). Four control groups received saline and 100 mg/kg of each PEE, CWE, and PEE/CWE, daily for 8 weeks. Dexa (1 mg/kg daily for 6 weeks) induced infertility where PEE, CWE, and PEE/CWE were given. Seminal analysis, male hormones, glycemic and oxidative stress markers, endoplasmic reticulum (ER) stress markers (Sigma 1R and GRP78), and autophagy regulators (Phospho-mTOR, LC3I/II, PI3KC3, and Beclin-1, P62, ATG5, and ATG7) were measured. The in vitro study illustrated the synergistic (CI < 1) antioxidant capacity of the PEE/CWE combination. Dexa exerts testicular damage by inducing oxidative reactions, a marked reduction in serum testosterone, TSH and LH levels, insulin resistance, ER stress, and autophagy. In contrast, the PEE and CWE extracts improve fertility hormones, sperm motility, and testicular histological alterations through attenuating oxidative stress and autophagy, with a synergistic effect upon combination. In conclusion, the administration of PEE/CWE has promised ameliorative impacts on male infertility and can delay disease progression

    Deciphering the putative bioactive metabolites and the underlying mechanism of Juniperus horizontalis Moench (Creeping juniper) in the treatment of inflammation using network pharmacology and molecular docking.

    No full text
    Objectives To investigate the chemical composition of the alcoholic extract from creeping juniper leaves using HPLC-MS/MS and to elucidate its potential anti-inflammatory mechanism through network-based pharmacology analysis to collectively enable a systematic exploration of the chemical composition, mechanism of action, and therapeutic potential of the alcoholic extract from creeping juniper leaves, providing valuable insights into its suitability as an anti-inflammatory agent.Methods Chemical profiling of the alcoholic extract of creeping juniper leaves using HPLC-MS/MS and revealing its anti-inflammatory mechanism using network-based pharmacology. Further, isolation of some of the identified biomarkers, assessment of their ex-vivo anti-inflammatory activity, and determination of their binding to pro-inflammatory cytokines using molecular docking and dynamics.Key findings Thirty-seven compounds were annotated and forwarded to network pharmacology analysis which revealed that the highest interactions were exhibited by quercetin, cosmosiin, myricetin, amentoflavone, hyperoside, isorhamnetin, and quercitrin whereas the most enriched inflammatory targets were IL-2, PGF, VEGFA, and TNFs. PI3K-Akt signaling pathway, arachidonic acid metabolism, and MAPK signaling pathway were found to be the most enriched ones. Six hit compounds were isolated and identified as hyperoside, quercetrin, cupressuflavone, hinokiflavone, amentoflavone, and quercetin. The isolated compounds showed strong anti-inflammatory activity against TNF-alpha, IL-6, and IL-1 beta, and molecular docking and dynamics simulation showed that quercetin, quercitrin, and hyperoside had the least binding energy with TNF-alpha, IL-6, and IL-1B, respectively.Conclusions Creeping juniper may reduce inflammation based on the suggested multi-compounds and multi-pathways, and that provided the basis for creeping juniper use as a potential anti-inflammatory drug
    corecore