41 research outputs found

    Rapid Turnover of Cortical NCAM1 Regulates Synaptic Reorganization after Peripheral Nerve Injury

    Get PDF
    Peripheral nerve injury can induce pathological conditions that lead to persistent sensitized nociception. Although there is evidence that plastic changes in the cortex contribute to this process, the underlying molecular mechanisms are unclear. Here, we find that activation of the anterior cingulate cortex (ACC) induced by peripheral nerve injury increases the turnover of specific synaptic proteins in a persistent manner. We demonstrate that neural cell adhesion molecule 1 (NCAM1) is one of the molecules involved and show that it mediates spine reorganization and contributes to the behavioral sensitization. We show striking parallels in the underlying mechanism with the maintenance of NMDA-receptor- and protein-synthesis-dependent long-term potentiation (LTP) in the ACC. Our results, therefore, demonstrate a synaptic mechanism for cortical reorganization and suggest potential avenues for neuropathic pain treatment

    Methylsulfonylmethane Suppresses Breast Cancer Growth by Down-Regulating STAT3 and STAT5b Pathways

    Get PDF
    Breast cancer is the most aggressive form of all cancers, with high incidence and mortality rates. The purpose of the present study was to investigate the molecular mechanism by which methylsulfonylmethane (MSM) inhibits breast cancer growth in mice xenografts. MSM is an organic sulfur-containing natural compound without any toxicity. In this study, we demonstrated that MSM substantially decreased the viability of human breast cancer cells in a dose-dependent manner. MSM also suppressed the phosphorylation of STAT3, STAT5b, expression of IGF-1R, HIF-1Ī±, VEGF, BrK, and p-IGF-1R and inhibited triple-negative receptor expression in receptor-positive cell lines. Moreover, MSM decreased the DNA-binding activities of STAT5b and STAT3, to the target gene promoters in MDA-MB 231 or co-transfected COS-7 cells. We confirmed that MSM significantly decreased the relative luciferase activities indicating crosstalk between STAT5b/IGF-1R, STAT5b/HSP90Ī±, and STAT3/VEGF. To confirm these findings in vivo, xenografts were established in Balb/c athymic nude mice with MDA-MB 231 cells and MSM was administered for 30 days. Concurring to our in vitro analysis, these xenografts showed decreased expression of STAT3, STAT5b, IGF-1R and VEGF. Through in vitro and in vivo analysis, we confirmed that MSM can effectively regulate multiple targets including STAT3/VEGF and STAT5b/IGF-1R. These are the major molecules involved in tumor development, progression, and metastasis. Thus, we strongly recommend the use of MSM as a trial drug for treating all types of breast cancers including triple-negative cancers

    Pyruvate Dehydrogenase Kinase Is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype

    Get PDF
    Metabolic reprogramming during macrophage polarization supports the effector functions of these cells in health and disease. Here, we demonstrate that pyruvate dehydrogenase kinase (PDK), which inhibits the pyruvate dehydrogenase-mediated conversion of cytosolic pyruvate to mitochondrial acetyl-CoA, functions as a metabolic checkpoint in M1 macrophages. Polarization was not prevented by PDK2 or PDK4 deletion but was fully prevented by the combined deletion of PDK2 and PDK4; this lack of polarization was correlated with improved mitochondrial respiration and rewiring of metabolic breaks that are characterized by increased glycolytic intermediates and reduced metabolites in the TCA cycle. Genetic deletion or pharmacological inhibition of PDK2/4 prevents polarization of macrophages to the M1 phenotype in response to inflammatory stimuli (lipopolysaccharide plus IFN-Ī³). Transplantation of PDK2/4-deficient bone marrow into irradiated wild-type mice to produce mice with PDK2/4-deficient myeloid cells prevented M1 polarization, reduced obesity-associated insulin resistance, and ameliorated adipose tissue inflammation. A novel, pharmacological PDK inhibitor, KPLH1130, improved high-fat diet-induced insulin resistance; this was correlated with a reduction in the levels of pro-inflammatory markers and improved mitochondrial function. These studies identify PDK2/4 as a metabolic checkpoint for M1 phenotype polarization of macrophages, which could potentially be exploited as a novel therapeutic target for obesity-associated metabolic disorders and other inflammatory conditions

    Germination and Growth Characteristics of Quercus myrsinifolia Blume Seedlings According to Seed Coat Removal, Type of Potting Soil and Irrigation Cycle

    No full text
    The importance of evergreen oak species is increasing due to changes in the ecosystem caused by climate change and environmental changes such as fine dust and carbon dioxide. The Quercus myrsinifolia Blume seeds showed a recalcitrant seed property, where the germination rate decreased when the moisture content was decreased. For seedling propagation of evergreen oak, the effect of oak seed coat (pericarp and testa) removal on germination and seedling growth as well as the effect of potting soil and irrigation cycle on seedling quality were investigated. The germination rate and germination characteristics of Q. myrsinifolia evergreen oak seeds showed significant differences depending on the storage period and the presence or absence of seed coat. Seed coat removal significantly increased germination rate compared to intact seeds, accelerated mean germination time, and increased germination rate and germination value. There was no significant difference in germination rate according to the storage period. The growth of Q. myrsinifolia seedlings was much better in the seeds with the seed coat removed than the intact seeds. The root collar diameter of seedlings germinated from intact seeds was 2.44 mm, and the root collar diameter of seedlings from which the seed coat was removed was 3.38 mm. As a result of the growth characteristics according to the potting soil, 1- and 3-year-old Q. myrsinifolia seedlings showed excellent root growth in commercial potting soil and sand mixed potting soil. Consequently, seedling quality index was 0.124–0.257 according to irrigation and 0.149–0.262 according to potting soil. From observing the root growth of the seedlings according to the irrigation treatment, in the case of 3-year-old seedlings, the total root length was 432 cm when irrigated every 3 days, and the growth was the best. The above results are expected to contribute significantly to the mass propagation of Q. myrsinifolia, which is important for warming and urban greening

    Genetic and Clinical Characteristics of Phyllodes Tumors of the Breast

    No full text
    PURPOSE: Phyllodes tumors (PTs) of the breast are rare, accounting for less than 1% of all breast tumors. Among PTs, malignant PTs (MPTs) have malignant characteristics and distant metastases occur in about 20% to 30% of MPTs. However, there is no effective treatment for MPTs with distant metastasis, resulting in an abject prognosis. We performed targeted deep sequencing on PTs to identify the associations between genetic alterations and clinical prognosis. METHODS: We performed targeted deep sequencing to evaluate the genetic characteristics of PTs and analyzed the relationships between clinical and genetic characteristics. RESULTS: A total of 17 PTs were collected between 2001 and 2012. Histologic review was performed by pathologists. The samples included three benign PTs, one borderline PT, and 13 MPTs. The most frequently detected genetic alteration occurred in the TERT promoter region (70.6%), followed by MED12 (64.7%). EGFR amplification and TP53 alteration were detected in four MPTs without genetic alterations in MED12 and TERT promoter regions. Genetic alterations of RARA and ZNF703 were repeatedly found in PTs with local recurrence, and genetic alterations of SETD2, BRCA2, and TSC1 were detected in PTs with distant metastasis. Especially, MPT harboring PTEN and RB1 copy number deletion showed rapid disease progression. CONCLUSIONS: In this study, we provide genetic characterization and potential therapeutic target for this rare, potentially lethal disease. Further large-scale comprehensive genetic study and functional validation are warranted
    corecore