25 research outputs found
Hybrid light-matter states in topological superconductors coupled to cavity photons
We consider a one-dimensional topological superconductor hosting Majorana
bound states at its ends coupled to a single mode cavity. In the strong
light-matter coupling regime, electronic and photonic degrees of freedom
hybridize resulting in the formation of polaritons. We find the polariton
spectrum by calculating the cavity photon spectral function of the coupled
electron-photon system. In the topological phase the lower in energy polariton
modes are formed by the bulk-Majorana transitions coupled to cavity photons and
are also sensitive to the Majorana parity. In the trivial phase the lower
polariton modes emerge due to the coupling of the bulk-bulk transitions across
the gap to photons. Our work demonstrates the formation of polaritons in
topological superconductors coupled to photons that contain information on the
features of the Majorana bound states.Comment: 9 pages, 5 figures; references adde
Microwave detection of gliding Majorana zero modes in nanowires
We study a topological superconducting nanowire that hosts gliding Majorana
zero modes in the presence of a microwave cavity field. We show that the cavity
decay rate depends on both the parity encoded by the Majorana zero modes and
their motion, in the absence of any direct overlap of their wavefunctions. That
is because the extended bulk states that overlap with both Majorana states,
facilitate their momentum-resolved microwave spectroscopy, with the gliding
acting as to modify the interference pattern via a momentum boost. Moreover, we
demonstrate that these non-local effects are robust against moderate disorder
in the chemical potential, and confirm the numerical calculations with an
analytical low-energy model. Our approach offers an alternative to tunneling
spectroscopy to probe non-local features associated with the Majorana zero
modes in nanowires.Comment: 6 + 9 pages, 7 figure
Zero-energy Andreev bound states from quantum dots in proximitized Rashba nanowires
We study an analytical model of a Rashba nanowire that is partially covered
by and coupled to a thin superconducting layer, where the uncovered region of
the nanowire forms a quantum dot. We find that, even if there is no topological
superconducting phase possible, there is a trivial Andreev bound state that
becomes pinned exponentially close to zero energy as a function of magnetic
field strength when the length of the quantum dot is tuned with respect to its
spin-orbit length such that a resonance condition of Fabry-Perot type is
satisfied. In this case, we find that the Andreev bound state remains pinned
near zero energy for Zeeman energies that exceed the characteristic spacing
between Andreev bound state levels but that are smaller than the spin-orbit
energy of the quantum dot. Importantly, as the pinning of the Andreev bound
state depends only on properties of the quantum dot, we conclude that this
behavior is unrelated to topological superconductivity. To support our
analytical model, we also perform a numerical simulation of a hybrid system
while explicitly incorporating a thin superconducting layer, showing that all
qualitative features of our analytical model are also present in the numerical
results.Comment: Accepted for publication in Phys. Rev.
Pinning of Andreev bound states to zero energy in two-dimensional superconductor-semiconductor Rashba heterostructures
We consider a two-dimensional electron gas with Rashba spin-orbit interaction
(SOI) partially covered by an s-wave superconductor, where the uncovered region
remains normal but is exposed to an effective Zeeman field applied
perpendicular to the plane. We find analytically and numerically Andreev bound
states (ABSs) formed in the normal region and show that, due to SOI and by
tuning the parameters of the system deeply into the topologically trivial
phase, one can reach a regime where the energy of the lowest ABS becomes pinned
close to zero as a function of Zeeman field. The energy of such an ABS is shown
to decay as an inverse power-law in Zeeman field. We also consider a
superconductor-semiconductor heterostructure with a superconducting vortex at
the center and in the presence of strong SOI, and find again ABSs that can get
pinned close to zero energy in the non-topological phase.Comment: 6 pages, 5 figure
Dynamic current susceptibility as a probe of Majorana bound states in nanowire-based Josephson junctions
We theoretically study a Josephson junction based on a semiconducting
nanowire subject to a time-dependent flux bias. We establish a general density
matrix approach for the dynamical response of the Majorana junction and
calculate the resulting flux-dependent susceptibility using both microscopic
and effective low-energy descriptions for the nanowire. We find that the
diagonal component of the susceptibility, associated with the dynamics of the
Majorana states populations, dominates over the standard Kubo contribution for
a wide range of experimentally relevant parameters. The diagonal term, thus far
unexplored in the context of Majorana physics, allows to probe accurately the
presence of Majorana bound states in the junction.Comment: 5 pages, 3 figures, 15 pages of supplemental materia
Transport quantique dans une nanostructure corrélée, couplée à une cavité micro-ondes
In this thesis, we study theoretically various physical properties of nanostructures that are coupledto microwave cavities. Cavity quantum electrodynamics (QED) with a quantum dot has been proven to be a powerful experimental technique that allows to study the latter by photonic measurements in addition to electronic transport measurements. In this thesis, we propose to use the cavity microwave field to extract additional information on the properties of quantum conductors: optical transmission coefficient gives direct access to electronic susceptibilities of these quantum conductors. We apply this general framework to different mesoscopic systems coupled to a superconducting microwave cavity, such as a tunnel junction, a quantum dot coupled to the leads, a topological wire and a superconducting ring. Cavity QED can be used to probe the finite frequency admittance of the quantum dot coupled to the microwave cavity via photonic measurements. Concerning the topological wire, we found that the cavity allows for determining the topological phase transition, the emergence of Majorana fermions, and also the parity of the ground state. For the superconducting ring, we propose to study the Josephson effect and the transition from the latter to the fractional Josephson effect, which is associated with the emergence of the Majorana fermions in the system, via the optical response of the cavity. The proposed framework allows to probe a broad range of nanostructures, including quantum dots and topological superconductors, in a non-invasive manner. Furthermore, it gives new information on the properties of these quantum conductors, which was not available in transport experiments.Dans cette thèse, nous étudions d’un point de vue théorique les propriétés physiques de nanostructures couplées à des cavités micro-ondes. L’électrodynamique quantique (QED) en cavité en présence d’une boîte quantique s’est révélée être une technique expérimentale puissante, permettant d'étudier cette dernière par des mesures photoniques en plus des mesures de transport électronique conventionnelles. Dans cette thèse, nous proposons d'utiliser le champ micro-ondes de la cavité afin d’extraire des informations supplémentaires sur les propriétés des conducteurs quantiques : le coefficient de transmission optique est directement lié à la susceptibilité électronique de ces conducteurs quantiques. Nous appliquons ce cadre général à différents systèmes mésoscopiques couplés à une cavité supraconductrice micro-ondes comme une jonction tunnel, une boîte quantique couplée à des réservoirs, un fil topologique et un anneau supraconducteur. La QED en cavité peut être utilisée pour sonder, par l'intermédiaire de mesures photoniques, la dépendance en fréquence de l’admittance du puits quantique couplé à la cavité micro-ondes. En ce qui concerne le fil topologique, nous avons montré que la cavité permet de caractériser la transition de phase topologique, l'émergence de fermions de Majorana, ainsi que la parité de l'état fondamental. Pour l'anneau supraconducteur, nous étudions par l'intermédiaire de la réponse optique de la cavité l’effet Josephson et le passage à l'effet Josephson fractionnaire, qui est associé à l'apparition de fermions de Majorana dans le système. Le cadre théorique proposé dans cette permet de sonder de manière non-invasive un large éventail de nanostructures, des boîtes quantiques aux supraconducteurs topologiques. En outre, il donne de nouvelles informations sur les propriétés de ces conducteurs quantiques, informations non accessibles via des expériences de transport