6 research outputs found

    A Balanced Reciprocal Translocation t(5;7)(q14;q32) Associated With Autistic Disorder: Molecular Analysis of the Chromosome 7 Breakpoint

    No full text
    International audienceAutism is a neuropsychiatric disorder characterized by impairments in social interaction, restricted and stereotypic pattern of interest with onset by 3 years of age. The results of genetic linkage studied for autistic disorder (AD) have suggested a susceptibility locus for the disease on the long arm of chromosome 7. We report a girl with AD and a balanced reciprocal translocation t(5;7)(q14;q32). The mother carries the translocation but do not express the disease. Fluorescent in situ hybridization (FISH) analysis with chromosome 7-specific YAC clones showed that the breakpoint coincides with the candidate region for AD. We identified a PAC clone that spans the translocation breakpoint and the breakpoint was mapped to a 2 kb region. Mutation screening of the genes SSBP and T2R3 located just centromeric to the breakpoint was performed in a set of 29 unrelated autistic sibling pairs who shared at least one chromosome 7 haplotype. We found no sequence variations, which predict amino acid alterations. Two single nucleotide polymorphisms were identified in the T2R3 gene, and associations between allele variants and AD in our population were not found. The methylation pattern of different chromosome 7 regions in the patient's genomic DNA appears normal. Here we report the clinical presentation of the patient with AD and the characterization of the genomic organization across the breakpoint at 7q32. The precise localization of the breakpoint on 7q32 may be relevant for further linkage studies and molecular analysis of AD in this region

    Novel isatin-derived molecules activate p53 via interference with Mdm2 to promote apoptosis

    No full text
    International audienceThe p53 protein is a key tumor suppressor in mammals. In response to various forms of genotoxic stress p53 stimulates expression of genes whose products induce cell cycle arrest and/or apoptosis. An E3-ubiquitin ligase, Mdm2 (mouse-double-minute 2) and its human ortholog Hdm2, physically interact with the amino-terminus of p53 to mediate its ubiquitin-mediated degradation via the proteasome. Thus, pharmacological inhibition of the p53-Mdm2 interaction leads to overall stabilization of p53 and stimulation of its anti-tumorigenic activity. In this study we characterize the biological effects of a novel class of non-genotoxic isatin Schiff and Mannich base derivatives (ISMBDs) that stabilize p53 on the protein level. The likely mechanism behind their positive effect on p53 is mediated via the competitive interaction with Mdm2. Importantly, unlike Nutlin, these compounds selectively promoted p53-mediated cell death. These novel pharmacological activators of p53 can serve as valuable molecular tools for probing p53-positive tumors and set up the stage for development of new anti-cancer drugs

    A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans.

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldSystemic lupus erythematosus (SLE, OMIM 152700) is a complex autoimmune disease that affects 0.05% of the Western population, predominantly women. A number of susceptibility loci for SLE have been suggested in different populations, but the nature of the susceptibility genes and mutations is yet to be identified. We previously reported a susceptibility locus (SLEB2) for Nordic multi-case families. Within this locus, the programmed cell death 1 gene (PDCD1, also called PD-1) was considered the strongest candidate for association with the disease. Here, we analyzed 2,510 individuals, including members of five independent sets of families as well as unrelated individuals affected with SLE, for single-nucleotide polymorphisms (SNPs) that we identified in PDCD1. We show that one intronic SNP in PDCD1 is associated with development of SLE in Europeans (found in 12% of affected individuals versus 5% of controls; P = 0.00001, r.r. (relative risk) = 2.6) and Mexicans (found in 7% of affected individuals versus 2% of controls; P = 0.0009, r.r. = 3.5). The associated allele of this SNP alters a binding site for the runt-related transcription factor 1 (RUNX1, also called AML1) located in an intronic enhancer, suggesting a mechanism through which it can contribute to the development of SLE in humans

    A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans

    No full text
    Systemic lupus erythematosus (SLE, OMIM 152700) is a complex autoimmune disease that affects 0.05% of the Western population, predominantly women(1-4). A number of susceptibility loci for SLE have been suggested in different populations, but the nature of the susceptibility genes and mutations is yet to be identified(5-9). We previously reported a susceptibility locus (SLEB2) for Nordic multi-case families(9,10). Within this locus, the programmed cell death 1 gene (PDCD1, also called PD-1) was considered the strongest candidate for association with the disease(11-14). Here, we analyzed 2,510 individuals, including members of five independent sets of families as well as unrelated individuals affected with SLE, for single-nucleotide polymorphisms (SNPs) that we identified in PDCD1. We show that one intronic SNP in PDCD1 is associated with development of SLE in Europeans (found in 12% of affected individuals versus 5% of controls; P=0.00001, r.r. (relative risk)=2.6) and Mexicans (found in 7% of affected individuals versus 2% of controls; P=0.0009, r.r.=3.5). The associated allele of this SNP alters a binding site for the runt-related transcription factor 1 (RUNX1, also called AML1) located in an intronic enhancer, suggesting a mechanism through which it can contribute to the development of SLE in humans
    corecore