1,661 research outputs found

    Legal framework for sustainable development and current global challenges

    Get PDF
    The subject of the article is the formation of the legal framework for sustainable development in the context of modern global challenges. The subject of the legal framework is the social relations of sustainable development, which are regulated by separate branches of law, but in the aggregate form a separate branch of law. The legal foundations of sustainable development, formed under the influence of international cooperation processes, are currently exposed to new threats-illegitimate economic restrictions that call into question the previously stated goals of sustainable development. The purpose of the article is to review the current state and prospects for the development of the legal framework in the context of both traditional threats and new challenges caused by the external restrictions since 2014, and to assess the prospects for sustainable development in Russia. The main research method is the study of international and Russian scientific research literature, analytical and review materials from open sources using induction, deduction, analysis, synthesis and the method of analogies. In preparing the article, historical, statistical, system-structural and causal research methods were also used. It has been proved that the first year of the functioning of the national economy under the newly introduced sanctions in 2022 showed both their negative impact and a certain adaptive potential of the economic system and companies. The article is focused on the prerequisites for the formation, essence and subject of sustainable development law, as well as on methods of legal regulation and examples of legal mechanisms for incorporating sustainable development factors into business practices. The article raises the question of the legitimacy of unilateral economic sanctions from the point of view of international law. The article also assesses the impact of sanctions on the activities of companies and their commitment to the principles of sustainable development. The conclusion is made that business community considers the mechanisms of legal regulation of sustainable development as anti-crisis measures and considers those mechanisms to be expedient and justified in the long term to pursue a policy of maintaining a commitment to sustainable development and finding ways to overcome sanctions pressure

    A Positive Feedback between Growth and Polarity Provides Directional Persistency and Flexibility to the Process of Tip Growth

    Get PDF
    International audiencePolar cell growth is a conserved morphogenetic process needed for survival, mating, and infection [1, 2]. It typically implicates the assembly and spatial stabilization of a cortical polar domain of the active form of a small GTPase of the Rho family, such as Cdc42, which promotes cytoskeleton assembly and secretion needed for local surface expansion [3, 4, 5, 6]. In multiple physiological instances, polarity domains may switch from being spatially unstable, exhibiting a wandering behavior around the cell surface, to being stable at a fixed cellular location [7, 8, 9, 10, 11]. Here, we show that the rate of surface growth may be a key determinant in controlling the spatial stability of active Cdc42 domains. Reducing the growth rate of single rod-shaped fission yeast cells using chemical, genetic, and mechanical means systematically causes polar domains to detach from cell tips and oscillate around the cell surface within minutes. Conversely, an abrupt increase in growth rate improves domain stabilization. A candidate screen identifies vesicular transport along actin cables as an important module mediating this process. Similar behavior observed in distant filamentous fungi suggests that this positive feedback between growth and polarity could represent a basal property of eukaryotic polarization, promoting persistent polar growth as well as growth redirection with respect to the mechanical environment of cells

    A new approach to developing and optimizing organization strategy based on stochastic quantitative model of strategic performance

    Get PDF
    This paper presents a highly formalized approach to strategy formulation and optimization of strategic performance through proper resource allocation. A stochastic quantitative model of strategic performance (SQMSP) is used to evaluate the efficiency of the strategy developed. The SQMSP follows the theoretical notions of the balanced scorecard (BSC) and strategy map methodologies, initially developed by Kaplan and Norton. Parameters of the SQMSP are suggested to be random variables and be evaluated by experts who give two-point (optimistic and pessimistic values) and three-point (optimistic, most probable and pessimistic values) evaluations. The Monte-Carlo method is used to simulate strategic performance. Having been implemented within a computer application and applied to solve the real problem (planning of an IT-strategy at the Faculty of Economics, University of Split) the proposed approach demonstrated its high potential as a basis for development of decision support tools related to strategic planning

    Plasma-Coated Polycaprolactone Nanofibers with Covalently Bonded Platelet-Rich Plasma Enhance Adhesion and Growth of Human Fibroblasts.

    Get PDF
    Biodegradable nanofibers are extensively employed in different areas of biology and medicine, particularly in tissue engineering. The electrospun polycaprolactone (PCL) nanofibers are attracting growing interest due to their good mechanical properties and a low-cost structure similar to the extracellular matrix. However, the unmodified PCL nanofibers exhibit an inert surface, hindering cell adhesion and negatively affecting their further fate. The employment of PCL nanofibrous scaffolds for wound healing requires a certain modification of the PCL surface. In this work, the morphology of PCL nanofibers is optimized by the careful tuning of electrospinning parameters. It is shown that the modification of the PCL nanofibers with the COOH plasma polymers and the subsequent binding of NH(2) groups of protein molecules is a rather simple and technologically accessible procedure allowing the adhesion, early spreading, and growth of human fibroblasts to be boosted. The behavior of fibroblasts on the modified PCL surface was found to be very different when compared to the previously studied cultivation of mesenchymal stem cells on the PCL nanofibrous meshes. It is demonstrated by X-ray photoelectron spectroscopy (XPS) that the freeze-thawed platelet-rich plasma (PRP) immobilization can be performed via covalent and non-covalent bonding and that it does not affect biological activity. The covalently bound components of PRP considerably reduce the fibroblast apoptosis and increase the cell proliferation in comparison to the unmodified PCL nanofibers or the PCL nanofibers with non-covalent bonding of PRP. The reported research findings reveal the potential of PCL matrices for application in tissue engineering, while the plasma modification with COOH groups and their subsequent covalent binding with proteins expand this potential even further. The use of such matrices with covalently immobilized PRP for wound healing leads to prolonged biological activity of the immobilized molecules and protects these biomolecules from the aggressive media of the wound

    Natural Afforestation on Abandoned Agricultural Lands during Post-Soviet Period: A Comparative Landsat Data Analysis of Bordering Regions in Russia and Belarus

    Get PDF
    Remote monitoring of natural afforestation processes on abandoned agricultural lands is crucial for assessments and predictions of forest cover dynamics, biodiversity, ecosystem functions and services. In this work, we built on the general approach of combining satellite and field data for forest mapping and developed a simple and robust method for afforestation dynamics assessment. This method is based on Landsat imagery and index-based thresholding and specifically targets suitability for limited field data. We demonstrated method’s details and performance by conducting a case study for two bordering districts of Rudnya (Smolensk region, Russia) and Liozno (Vitebsk region, Belarus). This study area was selected because of the striking differences in the development of the agrarian sectors of these countries during the post-Soviet period (1991-present day). We used Landsat data to generate a consistent time series of five-year cloud-free multispectral composite images for the 1985–2020 period via the Google Earth Engine. Three spectral indices, each specifically designed for either forest, water or bare soil identification, were used for forest cover and arable land mapping. Threshold values for indices classification were both determined and verified based on field data and additional samples obtained by visual interpretation of very high-resolution satellite imagery. The developed approach was applied over the full Landsat time series to quantify 35-year afforestation dynamics over the study area. About 32% of initial arable lands and grasslands in the Russian district were afforested by the end of considered period, while the agricultural lands in Belarus’ district decreased only by around 5%. Obtained results are in the good agreement with the previous studies dedicated to the agricultural lands abandonment in the Eastern Europe region. The proposed method could be further developed into a general universally applicable technique for forest cover mapping in different growing conditions at local and regional spatial levels

    Natural Afforestation on Abandoned Agricultural Lands during Post-Soviet Period: A Comparative Landsat Data Analysis of Bordering Regions in Russia and Belarus

    Get PDF
    Remote monitoring of natural afforestation processes on abandoned agricultural lands is crucial for assessments and predictions of forest cover dynamics, biodiversity, ecosystem functions and services. In this work, we built on the general approach of combining satellite and field data for forest mapping and developed a simple and robust method for afforestation dynamics assessment. This method is based on Landsat imagery and index-based thresholding and specifically targets suitability for limited field data. We demonstrated method’s details and performance by conducting a case study for two bordering districts of Rudnya (Smolensk region, Russia) and Liozno (Vitebsk region, Belarus). This study area was selected because of the striking differences in the development of the agrarian sectors of these countries during the post-Soviet period (1991-present day). We used Landsat data to generate a consistent time series of five-year cloud-free multispectral composite images for the 1985–2020 period via the Google Earth Engine. Three spectral indices, each specifically designed for either forest, water or bare soil identification, were used for forest cover and arable land mapping. Threshold values for indices classification were both determined and verified based on field data and additional samples obtained by visual interpretation of very high-resolution satellite imagery. The developed approach was applied over the full Landsat time series to quantify 35-year afforestation dynamics over the study area. About 32% of initial arable lands and grasslands in the Russian district were afforested by the end of considered period, while the agricultural lands in Belarus’ district decreased only by around 5%. Obtained results are in the good agreement with the previous studies dedicated to the agricultural lands abandonment in the Eastern Europe region. The proposed method could be further developed into a general universally applicable technique for forest cover mapping in different growing conditions at local and regional spatial levels

    Перспективи роботи з іноземними лікарями в системі післядипломної освіти

    Get PDF
    BACKGROUND: Polymer nanoparticles (PNP) are becoming increasingly important in nanomedicine and food-based applications. Size and surface characteristics are often considered to be important factors in the cellular interactions of these PNP, although systematic investigations on the role of surface properties on cellular interactions and toxicity of PNP are scarce. RESULTS: Fluorescent, monodisperse tri-block copolymer nanoparticles with different sizes (45 and 90 nm) and surface charges (positive and negative) were synthesized, characterized and studied for uptake and cytotoxicity in NR8383 and Caco-2 cells. All types of PNP were taken up by the cells. The positive smaller PNP(45) (45 nm) showed a higher cytotoxicity compared to the positive bigger PNP(90) (90 nm) particles including reduction in mitochondrial membrane potential (ΔΨ(m)), induction of reactive oxygen species (ROS) production, ATP depletion and TNF-α release. The negative PNP did not show any cytotoxic effect. Reduction in mitochondrial membrane potential (ΔΨ(m)), uncoupling of the electron transfer chain in mitochondria and the resulting ATP depletion, induction of ROS and oxidative stress may all play a role in the possible mode of action for the cytotoxicity of these PNP. The role of receptor-mediated endocytosis in the intracellular uptake of different PNP was studied by confocal laser scanning microscopy (CLSM). Involvement of size and charge in the cellular uptake of PNP by clathrin (for positive PNP), caveolin (for negative PNP) and mannose receptors (for hydroxylated PNP) were found with smaller PNP(45) showing stronger interactions with the receptors than bigger PNP(90). CONCLUSIONS: The size and surface characteristics of polymer nanoparticles (PNP; 45 and 90 nm with different surface charges) play a crucial role in cellular uptake. Specific interactions with cell membrane-bound receptors (clathrin, caveolin and mannose) leading to cellular internalization were observed to depend on size and surface properties of the different PNP. These properties of the nanoparticles also dominate their cytotoxicity, which was analyzed for many factors. The effective reduction in the mitochondrial membrane potential (ΔΨ(m)), uncoupling of the electron transfer chain in mitochondria and resulting ATP depletion, induction of ROS and oxidative stress likely all play a role in the mechanisms behind the cytotoxicity of these PNP
    corecore