189 research outputs found

    Kinetic control of catalytic CVD for high-quality graphene at low temperatures.

    Get PDF
    Low-temperature (∼600 °C), scalable chemical vapor deposition of high-quality, uniform monolayer graphene is demonstrated with a mapped Raman 2D/G ratio of >3.2, D/G ratio ≤0.08, and carrier mobilities of ≥3000 cm(2) V(-1) s(-1) on SiO(2) support. A kinetic growth model for graphene CVD based on flux balances is established, which is well supported by a systematic study of Ni-based polycrystalline catalysts. A finite carbon solubility of the catalyst is thereby a key advantage, as it allows the catalyst bulk to act as a mediating carbon sink while optimized graphene growth occurs by only locally saturating the catalyst surface with carbon. This also enables a route to the controlled formation of Bernal stacked bi- and few-layered graphene. The model is relevant to all catalyst materials and can readily serve as a general process rationale for optimized graphene CVD.Acknowledgment. R.S.W. acknowledges funding from EPSRC (Doctoral Training Award). S.H. acknowledges funding from ERC grant InsituNANO (no. 279342). This research was partially supported by the EU FP7 Work Programme under grant GRAFOL (project reference 285275).This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/nn303674g

    Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition

    Get PDF
    We report on a large improvement in the wetting of Al2O3 thin films grown by un-seeded atomic layer deposition on monolayer graphene, without creating point defects. This enhanced wetting is achieved by greatly increasing the nucleation density through the use of polar traps induced on the graphene surface by an underlying metallic substrate. The resulting Al2O3/graphene stack is then transferred to SiO2 by standard methods.P.R.K. acknowledges funding from Cambridge Commonwealth Trust. R.S.W. acknowledges funding from EPSRC (Doctoral training award). S.H. acknowledges funding from ERC Grant InsituNANO (No. 279342) and EPSRC (Grant No. EP/ H047565/1).This is the accepted manuscript. The final version is available from AIP from http://scitation.aip.org/content/aip/journal/apl/100/17/10.1063/1.4707376

    The parameter space of graphene chemical vapor deposition on polycrystalline Cu

    Get PDF
    A systematic study on the parameter space of graphene CVD on polycrystalline Cu foils is presented, aiming at a more fundamental process rationale in particular regarding the choice of carbon precursor and mitigation of Cu sublimation. CH4 as precursor requires H2 dilution and temperatures ≥1000°C to keep the Cu surface reduced and yield a high quality, complete monolayer graphene coverage. The H2 atmosphere etches as-grown graphene, hence maintaining a balanced CH4/H2 ratio is critical. Such balance is more easily achieved at low pressure conditions, at which however Cu sublimation reaches deleterious levels. In contrast, C6H6 as precursor requires no reactive diluent and consistently gives similar graphene quality at 100-150°C lower temperatures. The lower process temperature and more robust processing conditions allow the problem of Cu sublimation to be effectively addressed. Graphene formation is not inherently self-limited to a monolayer for any of the precursors. Rather, the higher the supplied carbon chemical potential the higher the likelihood of film inhomogeneity and primary and secondary multilayer graphene nucleation. For the latter, domain boundaries of the inherently polycrystalline CVD graphene offer pathways for a continued carbon supply to the catalyst. Graphene formation is significantly affected by the Cu crystallography, i.e. the evolution of microstructure and texture of the catalyst template form an integral part of the CVD process.S.H. acknowledges funding from ERC grant InsituNANO (n°279342) and from EPSRC (Grant Nr. EP/H047565/1). P.R.K. acknowledges funding from the Cambridge Commonwealth Trust and C.D. acknowledges funding from Royal Society.This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/jp303597m

    Measuring the nonlinear refractive index of graphene using the optical Kerr effect method

    Get PDF
    © 2016 Optical Society of America.By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third-order nonlinear response of graphene and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, n2 = -1.1 × 10-13 m2/W. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature and to discuss the discrepancies, taking into account parameters such as doping

    Graphene-passivated nickel as an oxidation-resistant electrode for spintronics.

    Get PDF
    We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.R.S.W. acknowledges funding from EPSRC (Doctoral training award). S.H. acknowledges funding from ERC Grant InsituNANO (Project Reference 279342). P.S. acknowledges the Institut Universitaire de France for junior fellowship support. This research was partially supported by the EU FP7 work programme under Grant GRAFOL (Project Reference 285275).This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/nn304424x

    A perpendicular graphene/ferromagnet electrode for spintronics

    Get PDF
    We report on the large-scale integration of graphene layers over a FePd perpendicular magnetic anisotropy (PMA) platform, targeting further downscaling of spin circuits. An L10 FePd ordered alloy showing both high magneto-crystalline anisotropy and a low magnetic damping constant, is deposited by magnetron sputtering. The graphene layer is then grown on top of it by large-scale chemical vapor deposition. A step-by-step study, including structural and magnetic analyses by x-ray diffraction and Kerr microscopy, shows that the measured FePd properties are preserved after the graphene deposition process. This scheme provides a graphene protected perpendicular spin electrode showing resistance to oxidation, atomic flatness, stable crystallinity, and perpendicular magnetic properties. This, in turn, opens the way to the generalization of hybrid 2D-materials on optimized PMA platforms, sustaining the development of spintronics circuits based on perpendicular spin-sources as required, for instance, for perpendicular-magnetic random-access memory schemes
    corecore