26 research outputs found

    A Pulverized Coal-Fired Boiler Optimized for Oxyfuel Combustion Technology

    Get PDF
    This paper presents the results of a study on modifying a pulverized coal-fired steam boiler in a 250 MWe power plant for oxygen combustion conditions. The entry point of the study is a boiler that was designed for standard air combustion. It has been proven that simply substituting air by oxygen as an oxidizer is not sufficient for maintaining a satisfactory operating mode, not even with flue gas recycling. Boiler design optimization aggregating modifications to the boiler’s dimensions, heating surfaces and recycled flue gas flow rate, and specification of a flue gas recycling extraction point is therefore necessary in order to achieve suitable conditions for oxygen combustion. Attention is given to reducing boiler leakage, to which external pre-combustion coal drying makes a major contribution. The optimization is carried out with regard to an overall power plant conception for which a decrease in efficiency due to CO2 separation is formulated

    CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Get PDF
    This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC) inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed

    Influence of insulation design of the house in Rokytnice nad Rokytnou.

    Get PDF
    Diplomová práce se zabývá vlivem zateplení rodinného domu na náklady spojené s vytápěním. Nejprve je věnována část vývoji výstavby, současným trendům ve výstavbě rodinných domů, cenám energií a možnostem vytápění. Dále je rozebrán zateplovací systém ETICS, způsob jeho provádění a tepelné posouzení rodinného domu se základními pojmy. Zateplení je navrženo ve třech variantách. Práce obsahuje tepelné posouzení původního stavu rodinného domu a následně tepelné posouzení po provedení zateplení a jeho ekonomickou návratnost. V závěru práce je zhodnocena doba návratnosti jednotlivých variant zateplení a vliv provedeného zateplení na cenu rodinného domu.This diploma thesis deals with insulation of the house and it's costs. First part relates to the developement of the construction, the current trends in the construction of houses, prices of energy and heating options. Next part relates with insulation system Etics, the way of it's implementation and thermal assessment with basic names. Thermal insulation is designed in three variants. The work includes thermal assessment in original condition and the assessment of new condition modified by adding thermal insulation with it's economic return. In conclusion, the diploma thesis evaluates the payback period of insulation options and the effect on price of this house.

    THE CONDENSATION OF WATER VAPOUR IN A MIXTURE CONTAINING A HIGH CONCENTRATION OF NON-CONDENSABLE GAS IN A VERTICAL TUBE

    Get PDF
    This paper deals with the condensation of water vapour possessing a content of noncondensable gas in vertical tubes. The condensation of pure steam on a vertical surface is introduced by the Nusselt condensation model. However, the condensation of water vapour in a mixture with non-condensable gas differs from pure vapour condensation and is a much more complex process. The differences for the condensation of water vapour in a mixture containing a high concentration were theoretically analysed and evaluated. In order to investigate these effects, an experimental stand was built. Experiments were carried out in regards to the case of pure steam condensation and the condensation of water vapour with a non-condensable gas mixture to evaluate the influence of the variable non-condensable gas content during the process. A non-condensable gas in a mixture with steam decreases the intensity of the condensation and the condensation heat transfer coefficient. A gradual reduction of the volume and partial pressure of steam in the mixture causes a decrease in the condensation temperature of steam, and the temperature difference between steam and cooling water. The increasing non-condensable gas concentration restrains the transportation of steam towards the tube wall and this has a significant effect on the decrease in the condensation rate

    Improving the efficiency of a steam power plant cycle by integrating a rotary indirect dryer

    Get PDF
    This article deals with the integration of a rotary indirect dryer, heated by low pressure extraction steam, into the Rankine cycle. The article evaluates the power generation efficiency of a steam power plant, with an integrated indirect dryer, which combusts waste biomass with a high moisture content and is further compared to the same plant without the dryer. The benefits of the dryer’s integration are analysed in respect to various moisture contents of biomass before and after the drying. The evaluation of the power generation efficiency is based on parameters evaluated from experiments carried out on the steam-heated rotary indirect dryer, such as specific energy consumption and evaporation capacity. The dryer’s integration improves the efficiency of the cycle in comparison to a cycle without a dryer, where moist biomass is directly combusted. This improvement increases along with the difference between the moisture content before and after the drying. For the reference state, a fuel with a moisture content of 50% was dried to 20% and the efficiency rised by 4.38 %. When the fuel with a moisture content of 60% is dried to 10 %, the power generation efficiency increases by a further 10.1 %. However, the required dryer surface for drying the fuel with a moisture content of 60% to 10% is 1.9 times greater as compared to the reference state. The results of the work can be used both for the prediction of the power generation efficiency in a power plant with this type of dryer based on the moisture content in the fuel and the biomass indirect dryer design

    THE EFFECT OF THE FILLING RATIO ON THE OPERATING CHARACTERISTICS OF AN INDIRECT DRUM DRYER

    Get PDF
    This article investigates the effect of the filling ratio of the indirect rotary dryers on their operating characteristics. For moist biomass drying before combustion, the use of indirect drum dryers heated by a low pressure steam has proven to be highly suitable. Regarding the design of new dryers, it is necessary to experimentally verify the operating characteristics for specific materials and drying conditions. For this purpose, a set of experiments on a steam heated rotary drum dryer were carried out with green wood chips containing 60 to 66 wt% of moisture. The following operational characteristics of the dryer were experimentally determined: drying curves describing the process, square and volumetric evaporation capacities and drying heat consumptions. Based on the experimental results, the effect of various drum filling by dried material on the mentioned operating characteristics was analysed. On the one hand, higher drum filling ratio increases the drying time, on the other hand, the evaporation capacity also increases, while the specific energy consumption does not significantly alter. The maximum value of the evaporation capacity was reached when the drum was filled to 20 wt%. When the filling ratio was increased to 25 wt%, the evaporation capacity experienced almost no change

    EVALUATION OF MOIST BIOMASS

    Get PDF
    Biomass as a fuel for the direct processing of energy is accessible in many forms of variable quality. Therefore, determining the price is problematic. This paper deals with the price determination of biomass depending on its moisture. Fuel moisture influences the amount of heat it is possible to gain from the combustion process, as well as the production costs of the heat. These factors are analyzed for variable fuel moisture. Evaluation of the biomass is carried out according to computed dependencies and the dependence of biomass price on its moisture is proposed

    Theoretical and experimental study of water vapour condensation with high content of non-condensable gas in a vertical tube

    Get PDF
    This article deals with the possibility of separating water vapour from flue gases after oxyfuel combustion using condensation processes. Those processes can generally be described as condensation of water vapour in the presence of non-condensable gases. Hence, the effect of noncondensable gas (NCG) on the condensation process has been theoretically and experimentally analysed in this study. The theoretical model was developed on the basis of the heat and mass transfer analogy with respect to the effect of the NCG, the flow mode of the condensate film, the shear stress of the flowing mixture, subcooling and superheating. Subsequently, an experimental analysis was carried out on a 1.5m long vertical pipe with an inner diameter of 23.7mm. The mixture of vapour and air flowed inside the inner tube with an air mass fraction ranging from 23% to 62%. The overall heat transfer coefficients (HTC) from the theoretical model and experimental measurement are significantly lower than the HTC obtained according to the Nusselt theory for the condensation of pure water vapour. The overall HTC decreases along the tube length as the gas concentration increases, which corresponds to a decrease in the local condensation rate. The highest values of the HTC are observed in the condenser inlet, although a strong decrease in HTC is also observed here. Meanwhile, there is a possibility for an HTC enhancement through turbulence increase of the condensing mixture in the condenser outlet. Results also showed that the heat resistance of the mixture is several times higher than the heat resistance of the condensate film. The developed theoretical model based on heat and mass transfer analogy is in good agreement with experimental results with the standard deviation within +25% and −5%. The model is more accurate for lower NCG concentrations

    Analysis of parameters important for indirect drying of biomass fuel

    Get PDF
    This paper focuses on biomass drying for the design and operation of an indirect dryer used in a biomass power plant. Indirect biomass drying is not as well described process as direct drying, especially when used for the preparation of biomass in energy processes, such as combustion or gasification. Therefore, it is necessary to choose a suitable model describing the drying process and evaluate its applicability for this purpose. The aim of this paper is to identify parameters that most significantly affect the indirect drying process of biomass for precise targeting of future experiments. For this purpose, the penetration model was chosen. The penetration model describes indirect drying through 21 parameters. To run a series of experiments focused on all parameters would be time consuming. Therefore, the easier way is to select the most important parameters through a sensitivity analysis, and then perform experiments focused only on the significant parameters The parameters evaluated as significant are the temperature of the heated wall, operating pressure in the drying chamber, surface coverage factor, emissivity of the heated wall, emissivity of the bed, diameter of the particle, and particle surface roughness. Due to the presumption of perfect mixing of the material being dried, stirrer speed is added into important parameters. Based on these findings, it will be possible to reduce the scope of experiments necessary to verify the applicability of the penetration model for the description of indirect biomass drying and the design of dryers for a practical use

    Regulace mezinárodní silniční nákladní dopravy

    No full text
    Dokončená práce s úspěšnou obhajobo
    corecore