28 research outputs found

    Hybrid intelligent framework for automated medical learning

    Get PDF
    This paper investigates the automated medical learning and proposes hybrid intelligent framework, called Hybrid Automated Medical Learning (HAML). The goal is the efficient combination of several intelligent components in order to automatically learn the medical data. Multi agents system is proposed by using distributed deep learning, and knowledge graph for learning medical data. The distributed deep learning is used for efficient learning of the different agents in the system, where the knowledge graph is used for dealing with heterogeneous medical data. To demonstrate the usefulness and accuracy of the HAML framework, intensive simulations on medical data were conducted. A wide range of experiments were conducted to verify the efficiency of the proposed system. Three case studies are discussed in this research, the first case study is related to process mining, and more precisely on the ability of HAML to detect relevant patterns from event medical data. The second case study is related to smart building, and the ability of HAML to recognize the different activities of the patients. The third one is related to medical image retrieval, and the ability of HAML to find the most relevant medical images according to the image query. The results show that the developed HAML achieves good performance compared to the most up-to-date medical learning models regarding both the computational and cost the quality of returned solutionspublishedVersio

    Game theory framework for MAC parameter optimization in energy-delay constrained sensor networks

    Get PDF
    Optimizing energy consumption and end-to-end (e2e) packet delay in energy-constrained, delay-sensitive wireless sensor networks is a conflicting multiobjective optimization problem. We investigate the problem from a game theory perspective, where the two optimization objectives are considered as game players. The cost model of each player is mapped through a generalized optimization framework onto protocol-specific MAC parameters. From the optimization framework, a game is first defined by the Nash bargaining solution (NBS) to assure energy consumption and e2e delay balancing. Secondy, the Kalai-Smorodinsky bargaining solution (KSBS) is used to find an equal proportion of gain between players. Both methods offer a bargaining solution to the duty-cycle MAC protocol under different axioms. As a result, given the two performance requirements (i.e., the maximum latency tolerated by the application and the initial energy budget of nodes), the proposed framework allows to set tunable system parameters to reach a fair equilibrium point that dually minimizes the system latency and energy consumption. For illustration, this formulation is applied to six state-of-the-art wireless sensor network (WSN) MAC protocols: B-MAC, X-MAC, RI-MAC, SMAC, DMAC, and LMAC. The article shows the effectiveness and scalability of such a framework in optimizing protocol parameters that achieve a fair energy-delay performance trade-off under the application requirements

    Power-Aware Architecture to Combat Intelligent Adaptive Attacks in Ad-Hoc Wireless Networks

    No full text

    GFSOM: Genetic Feature Selection for Ontology Matching

    No full text
    This paper studies the ontology matching problem and proposes a genetic feature selection approach for ontology matching (GFSOM), which exploits the feature selection using the genetic approach to select the most appropriate properties for the matching process. Three strategies are further proposed to improve the performance of the designed approach. The genetic algorithm is first performed to select the most relevant properties, and the matching process is then applied to the selected properties instead of exploring all properties of the given ontology. To demonstrate the usefulness and accuracy of the GFSOM framework, several experiments on DBpedia ontology database are conducted. The results show that the ontology matching process benefits from the feature selection and the genetic algorithm, where GFSOM outperforms the state-of-the-art ontology matching approaches in terms of both the execution time and quality of the matching process
    corecore