66 research outputs found

    Thin film solar cells based on the ternary compound Cu2SnS3

    Get PDF
    Alongside with Cu2ZnSnS4 and SnS, the p-type semiconductor Cu2SnS3 also consists of only Earth abundant and low-cost elements and shows comparable opto-electronic properties, with respect to Cu2ZnSnS4 and SnS, making it a promising candidate for photovoltaic applications of the future. In this work, the ternary compound has been produced via the annealing of an electrodeposited precursor in a sulfur and tin sulfide environment. The obtained absorber layer has been structurally investigated by X-ray diffraction and results indicate the crystal structure to be monoclinic. Its optical properties have been measured via photoluminescence, where an asymmetric peak at 0.95 eV has been found. The evaluation of the photoluminescence spectrum indicates a band gap of 0.93 eV which agrees well with the results from the external quantum efficiency. Furthermore, this semiconductor layer has been processed into a photovoltaic device with a power conversion efficiency of 0.54%, a short circuit current of 17.1 mA/cm2, an open circuit voltage of 104 mV hampered by a small shunt resistance, a fill factor of 30.4%, and a maximal external quantum efficiency of just less than 60%. In addition, the potential of this Cu2SnS3 absorber layer for photovoltaic applications is discussed

    Graphene on Ir(111): Physisorption with chemical modulation

    Get PDF
    The nonlocal van der Waals density functional (vdW-DF) approach is applied to calculate the binding of graphene to Ir(111). The precise agreement of the calculated mean height h = 3.41 Å ; of the C atoms with their mean height h = (3.38 ± 0.04) Å ; as measured by the X-ray standing wave (XSW) technique provides a benchmark for the applicability of the non-local functional. We find bonding of graphene to Ir(111) to be due to the van der Waals interaction with an antibonding average contribution from chemical interaction. Despite its globally repulsive character, in certain areas of the large graphene moiré unit cell charge accumulation between Ir substrate and graphene C atoms is observed, signaling a weak covalent bond formation

    Electrochemical deposition of small molecules for electronic materials

    Get PDF
    The method of the deposition of films of small molecules for use in electronic applications is just as important as the molecule design itself as the film’s morphology and continuity influence the performance of the devices that they are incorporated in. The purpose of the work in this thesis was to develop a method of electrochemically depositing films of small molecules for potential use in electronic applications. A method of electrochemically depositing films of chemically reduced low solubility dye molecules was successfully pioneered. The process was developed using N,N dibutyl-3,4,9,10-perylene-bis(dicarboxime), a simplified version of 3,4,9,10-perylene-tetracarboxylic bisbenzimidalzole. Both of these dyes have been used in electronic applications, but low solubility makes them difficult to deposit by traditional solution techniques. A series of films was electrochemically deposited onto FTO coated glass and field effect transistors using coulometry. These films were characterised by absorption spectroscopy, photoluminescence, scanning electron microscopy, X-ray diffraction and photo-electrochemistry. The same deposition method was applied to copper phthalocyanine. These films were characterised by absorption spectroscopy, photoluminescence, scanning electron microscopy and X-ray diffraction. The developed method was used to deposit films of bilayers of dyes and to investigate the dye penetration during the deposition of copper phthalocyanine onto porous titanium dioxide. Films of neutral copper and nickel dithiolenes were electrodeposited from air-stable TMA salts to investigate the absorbance of the near infrared species formed, as well as to investigate the conductivity of both complexes and the magnetoresponse of the neutral copper dithiolene which is air unstable when formed chemically

    Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence

    Get PDF
    In this work, we present the Raman peak positions of the quaternary pure selenide compound Cu2ZnSnSe4 (CZTSe) and related secondary phases that were grown and studied under the same conditions. A vast discussion about the position of the X-ray diffraction (XRD) reflections of these compounds is presented. It is known that by using XRD only, CZTSe can be identified but nothing can be said about the presence of some secondary phases. Thin films of CZTSe, Cu2SnSe3, ZnSe, SnSe, SnSe2, MoSe2 and a-Se were grown, which allowed their investigation by Raman spectroscopy (RS). Here we present all the Raman spectra of these phases and discuss the similarities with the spectra of CZTSe. The effective analysis depth for the common back-scattering geometry commonly used in RS measurements, as well as the laser penetration depth for photoluminescence (PL) were estimated for different wavelength values. The observed asymmetric PL band on a CZTSe film is compatible with the presence of CZTSe single-phase and is discussed in the scope of the fluctuating potentials’ model. The estimated bandgap energy is close to the values obtained from absorption measurements. In general, the phase identification of CZTSe benefits from the contributions of RS and PL along with the XRD discussion.info:eu-repo/semantics/publishedVersio
    corecore