30 research outputs found

    Bioelectricity of Cancer

    Get PDF

    Nerve growth factor enhances voltage-gated Na+ channel activity and transwell migration in Mat-LyLu rat prostate cancer cell line

    Get PDF
    The highly dynamic nature of voltage-gated Na+ channel (VGSC) expression and its controlling mechanism(s) are not well understood. In this study, we investigated the possible involvement of nerve growth factor (NGF) in regulating VGSC activity in the strongly metastatic Mat-LyLu cell model of rat prostate cancer (PCa). NGF increased peak VGSC current density in a time- and dose-dependent manner. NGF also shifted voltage to peak and the half-activation voltage to more positive potentials, and produced currents with faster kinetics of activation; sensitivity to the VGSC blocker tetrodotoxin (TTX) was not affected. The NGF-induced increase in peak VGSC current density was suppressed by both the pan-trk antagonist K252a, and the protein kinase A (PKA) inhibitor KT5720. NGF did not affect the Nav1.7 mRNA level, but the total VGSC alpha-subunit protein level was upregulated. NGF potentiated the cells' migration in Transwell assays, and this was not affected by TTX. We concluded that NGF upregulated functional VGSC expression in Mat-LyLu cells, with PKA as a signaling intermediate, but enhancement of migration by NGF was independent of VGSC activity

    The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells

    Get PDF
    Upregulation of functional voltage-gated Na+ channels (VGSCs) occurs in metastatic human breast cancer (BCa) in vitro and in vivo. The present study aimed to ascertain the specific involvement of the 'neonatal' splice variant of Nav1.5 (nNav1.5), thought to be predominant, in the VGSC-dependent invasive behaviour of MDA-MB-231 cells. Functional activity of nNav1.5 was suppressed by two different methods targeting nNav1.5: (i) small interfering RNA (siRNA), and (ii) a polyclonal antibody (NESO-pAb); effects upon migration and invasion were determined. nNav1.5 mRNA, protein and signalling were measured using real-time PCR, Western blotting, and patch clamp recording, respectively. Treatment with the siRNA rapidly reduced (by similar to 90%) the level of nNav1.5 (but not adult Nav1.5) mRNA, but the protein reduction was much smaller (similar to 30%), even after 13 days. Nevertheless, the siRNA reduced peak VGSC current density by 33%, and significantly increased the cells' sensitivity to nanomolar tetrodotoxin (TTX). Importantly, the siRNA suppressed in vitro migration by 43%, and eliminated the normally inhibitory effect of TTX. Migrated MDA-MB-231 cells expressed more nNav1.5 protein at the plasma membrane than non-migrated cells. Furthermore, NESO-pAb reduced migration by up to 42%, in a dose-dependent manner. NESO-pAb also reduced Matrigel invasion without affecting proliferation. TTX had no effect on cells already treated with NESO-pAb. It was concluded that nNav1.5 is primarily responsible for the VGSC-dependent enhancement of invasive behaviour in MDA-MB-231 cells. Accordingly, targeting nNav1.5 expression/activity may be useful in clinical management of metastatic BCa

    In Vivo Evidence for Voltage-Gated Sodium Channel Expression in Carcinomas and Potentiation of Metastasis

    Get PDF
    A wide body of evidence suggests that voltage-gated sodium channels (VGSCs) are expressed de novo in several human carcinomas where channel activity promotes a variety of cellular behaviours integral to the metastatic cascade. These include directional motility (including galvanotaxis), pH balance, extracellular proteolysis, and invasion. Contrary to the substantial in vitro data, however, evidence for VGSC involvement in the cancer process in vivo is limited. Here, we critically assess, for the first time, the available in vivo evidence, hierarchically from mRNA level to emerging clinical aspects, including protein-level studies, electrolyte content, animal tests, and clinical imaging. The evidence strongly suggests that different VGSC subtypes (mainly Nav1.5 and Nav1.7) are expressed de novo in human carcinoma tissues and generally parallel the situation in vitro. Consistent with this, tissue electrolyte (sodium) levels, quantified by clinical imaging, are significantly higher in cancer vs. matched non-cancer tissues. These are early events in the acquisition of metastatic potential by the cancer cells. Taken together, the multi-faceted evidence suggests that the VGSC expression has clinical (diagnostic and therapeutic) potential as a prognostic marker, as well as an anti-metastatic target. The distinct advantages offered by the VGSC include especially (1) its embryonic nature, demonstrated most clearly for the predominant neonatal Nav1.5 expression in breast and colon cancer, and (2) the specifically druggable persistent current that VGSCs develop under hypoxic conditions, as in growing tumours, which promotes invasiveness and metastasis

    Regulation of voltage-gated sodium channel expression in cancer : hormones, growth factors and auto-regulation

    Get PDF
    Although ion channels are increasingly being discovered in cancer cells in vitro and in vivo, and shown to contribute to different aspects and stages of the cancer process, much less is known about the mechanisms controlling their expression. Here, we focus on voltage-gated Na(+) channels (VGSCs) which are upregulated in many types of carcinomas where their activity potentiates cell behaviours integral to the metastatic cascade. Regulation of VGSCs occurs at a hierarchy of levels from transcription to post-translation. Importantly, mainstream cancer mechanisms, especially hormones and growth factors, play a significant role in the regulation. On the whole, in major hormone-sensitive cancers, such as breast and prostate cancer, there is a negative association between genomic steroid hormone sensitivity and functional VGSC expression. Activity-dependent regulation by positive feedback has been demonstrated in strongly metastatic cells whereby the VGSC is self-sustaining, with its activity promoting further functional channel expression. Such auto-regulation is unlike normal cells in which activity-dependent regulation occurs mostly via negative feedback. Throughout, we highlight the possible clinical implications of functional VGSC expression and regulation in cancer

    siRNA Knockdown of Ribosomal Protein Gene RPL19 Abrogates the Aggressive Phenotype of Human Prostate Cancer

    Get PDF
    We provide novel functional data that posttranscriptional silencing of gene RPL19 using RNAi not only abrogates the malignant phenotype of PC-3M prostate cancer cells but is selective with respect to transcription and translation of other genes. Reducing RPL19 transcription modulates a subset of genes, evidenced by gene expression array analysis and Western blotting, but does not compromise cell proliferation or apoptosis in-vitro. However, growth of xenografted tumors containing the knocked-down RPL19 in-vivo is significantly reduced. Analysis of the modulated genes reveals induction of the non-malignant phenotype principally to involve perturbation of networks of transcription factors and cellular adhesion genes. The data provide evidence that extra-ribosomal regulatory functions of RPL19, beyond protein synthesis, are critical regulators of cellular phenotype. Targeting key members of affected networks identified by gene expression analysis raises the possibility of therapeutically stabilizing a benign phenotype generated by modulating the expression of an individual gene and thereafter constraining a malignant phenotype while leaving non-malignant tissues unaffected

    Proteolytically released Lasso/teneurin-2 induces axonal attraction by interacting with latrophilin-1 on growth cones

    Get PDF
    A presynaptic adhesion G-protein-coupled receptor, latrophilin-1, and a postsynaptic transmembrane protein, Lasso/teneurin-2, are implicated in trans-synaptic interaction that contributes to synapse formation. Surprisingly, during neuronal development, a substantial proportion of Lasso is released into the intercellular space by regulated proteolysis, potentially precluding its function in synaptogenesis. We found that released Lasso binds to cell-surface latrophilin-1 on axonal growth cones. Using microfluidic devices to create stable gradients of soluble Lasso, we show that it induces axonal attraction, without increasing neurite outgrowth. Using latrophilin-1 knockout in mice, we demonstrate that latrophilin-1 is required for this effect. After binding latrophilin-1, Lasso causes downstream signaling, which leads to an increase in cytosolic calcium and enhanced exocytosis, processes that are known to mediate growth cone steering. These findings reveal a novel mechanism of axonal pathfinding, whereby latrophilin-1 and Lasso mediate both short-range interaction that supports synaptogenesis, and long-range signalling that induces axonal attraction

    Combinatorial Therapy of Cancer: Possible Advantages of Involving Modulators of Ionic Mechanisms

    Get PDF
    Cancer is a global health problem that 1 in 2–3 people can expect to experience during their lifetime. Several different modalities exist for cancer management, but all of these suffer from significant shortcomings in both diagnosis and therapy. Apart from developing completely new therapies, a viable way forward is to improve the efficacy of the existing modalities. One way is to combine these with each other or with other complementary approaches. An emerging latter approach is derived from ionic mechanisms, mainly ion channels and exchangers. We evaluate the evidence for this systematically for the main treatment methods: surgery, chemotherapy, radiotherapy and targeted therapies (including monoclonal antibodies, steroid hormones, tyrosine kinase inhibitors and immunotherapy). In surgery, the possible systemic use of local anesthetics to suppress subsequent relapse is still being discussed. For all the other methods, there is significant positive evidence for several cancers and a range of modulators of ionic mechanisms. This applies also to some of the undesirable side effects of the treatments. In chemotherapy, for example, there is evidence for co-treatment with modulators of the potassium channel (Kv11.1), pH regulation (sodium–hydrogen exchanger) and Na+-K+-ATPase (digoxin). Voltage-gated sodium channels, shown previously to promote metastasis, appear to be particularly useful for co-targeting with inhibitors of tyrosine kinases, especially epidermal growth factor. It is concluded that combining current orthodox treatment modalities with modulators of ionic mechanisms can produce beneficial effects including (i) making the treatment more effective, e.g., by lowering doses; (ii) avoiding the onset of resistance to therapy; (iii) reducing undesirable side effects. However, in many cases, prospective clinical trials are needed to put the findings firmly into clinical context
    corecore