16 research outputs found

    Gαi2- and Gαi3-Specific Regulation of Voltage-Dependent L-Type Calcium Channels in Cardiomyocytes

    Get PDF
    BACKGROUND: Two pertussis toxin sensitive G(i) proteins, G(i2) and G(i3), are expressed in cardiomyocytes and upregulated in heart failure. It has been proposed that the highly homologous G(i) isoforms are functionally distinct. To test for isoform-specific functions of G(i) proteins, we examined their role in the regulation of cardiac L-type voltage-dependent calcium channels (L-VDCC). METHODS: Ventricular tissues and isolated myocytes were obtained from mice with targeted deletion of either Gα(i2) (Gα(i2) (-/-)) or Gα(i3) (Gα(i3) (-/-)). mRNA levels of Gα(i/o) isoforms and L-VDCC subunits were quantified by real-time PCR. Gα(i) and Ca(v)α(1) protein levels as well as protein kinase B/Akt and extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation levels were assessed by immunoblot analysis. L-VDCC function was assessed by whole-cell and single-channel current recordings. RESULTS: In cardiac tissue from Gα(i2) (-/-) mice, Gα(i3) mRNA and protein expression was upregulated to 187 ± 21% and 567 ± 59%, respectively. In Gα(i3) (-/-) mouse hearts, Gα(i2) mRNA (127 ± 5%) and protein (131 ± 10%) levels were slightly enhanced. Interestingly, L-VDCC current density in cardiomyocytes from Gα(i2) (-/-) mice was lowered (-7.9 ± 0.6 pA/pF, n = 11, p<0.05) compared to wild-type cells (-10.7 ± 0.5 pA/pF, n = 22), whereas it was increased in myocytes from Gα(i3) (-/-) mice (-14.3 ± 0.8 pA/pF, n = 14, p<0.05). Steady-state inactivation was shifted to negative potentials, and recovery kinetics slowed in the absence of Gα(i2) (but not of Gα(i3)) and following treatment with pertussis toxin in Gα(i3) (-/-). The pore forming Ca(v)α(1) protein level was unchanged in all mouse models analyzed, similar to mRNA levels of Ca(v)α(1) and Ca(v)β(2) subunits. Interestingly, at the cellular signalling level, phosphorylation assays revealed abolished carbachol-triggered activation of ERK1/2 in mice lacking Gα(i2). CONCLUSION: Our data provide novel evidence for an isoform-specific modulation of L-VDCC by Gα(i) proteins. In particular, loss of Gα(i2) is reflected by alterations in channel kinetics and likely involves an impairment of the ERK1/2 signalling pathway

    Cardiac Gα<sub>i2</sub> Protein Function and Regulation of High-Voltage-Gated L-type Calcium Channels

    No full text
    It has been proposed that the highly homologous and pertussis toxin (PTX)-sensitive cardiac Gαi isoforms, Gαi2 and Gαi3, are functionally distinct. Moreover, they are upregulated in heart failure. However, their stimulation by the parasympathic and sympathic nervous system and their effects on cardiac L-type calcium channel regulation remain unclear. In this study, the Gαi isoform-specific modulation of L- type calcium channels at the whole-cell level is investigated, using cardiomyocytes from mice lacking either Gαi2 (Gαi2-/-) or Gαi3 (Gαi3-/-) protein. In these cardiomyocytes, the other Gαi isoform is enhanced on mRNA and protein levels, whereas channel expression levels of Cavα and Cavβ subunits are nearly unchanged. Furthermore, subtype-specific signalling effects are detected. In particular, calcium current density in Gαi2-/- cardiomyocytes is significantly decreased, whereas it is significantly increased in Gαi3-/- cells as compared to control animals. Interestingly, only genetic or PTX-mediated abolition of Gαi2 function causes a steady-state inactivation shift towards hyperpolarized potentials and a delayed calcium current recovery. This novel Gαi2-associated effect is reflected by alterations in calcium channel kinetics and likely involves activation of the extracellular signal-regulated kinase 1 and 2 (ERK1/2) signalling pathways

    Lack of Gαi2 leads to dilative cardiomyopathy and increased mortality in β1-adrenoceptor overexpressing mice

    Get PDF
    Aims Inhibitory G (Gi) proteins have been proposed to be cardioprotective. We investigated effects of Gαi2 knockout on cardiac function and survival in a murine heart failure model of cardiac β1-adrenoceptor overexpression. Methods and results β1-transgenic mice lacking Gαi2 (β1-tg/Gαi2 -/-) were compared with wild-type mice and littermates either overexpressing cardiac β1-adrenoceptors (β1-tg) or lacking Gαi2 (Gαi2 -/-). At 300 days, mortality of mice only lacking Gαi2 was already higher compared with wild-type or β1-tg, but similar to β1-tg/Gαi2 -/-, mice. Beyond 300 days, mortality of β1-tg/Gαi2 -/- mice was enhanced compared with all other genotypes (mean survival time: 363 ± 21 days). At 300 days of age, echocardiography revealed similar cardiac function of wild-type, β1-tg, and Gαi2 -/- mice, but significant impairment for β1-tg/Gαi2 -/- mice (e.g. ejection fraction 14 ± 2 vs. 40 ± 4% in wild-type mice). Significantly increased ventricle-to-body weight ratio (0.71 ± 0.06 vs. 0.48 ± 0.02% in wild-type mice), left ventricular size (length 0.82 ± 0.04 vs. 0.66 ± 0.03 cm in wild types), and atrial natriuretic peptide and brain natriuretic peptide expression (mRNA: 2819 and 495% of wild-type mice, respectively) indicated hypertrophy. Gαi3 was significantly up-regulated in Gαi2 knockout mice (protein compared with wild type: 340 ± 90% in Gαi2 -/- and 394 ± 80% in β1-tg/Gαi2 -/-, respectively). Conclusions Gαi2 deficiency combined with cardiac β1-adrenoceptor overexpression strongly impaired survival and cardiac function. At 300 days of age, β1-adrenoceptor overexpression alone had not induced cardiac hypertrophy or dysfunction while there was overt cardiomyopathy in mice additionally lacking Gαi2. We propose an enhanced effect of increased β1-adrenergic drive by the lack of protection via Gαi2. Gαi3 up-regulation was not sufficient to compensate for Gαi2 deficiency, suggesting an isoform-specific or a concentration-dependent mechanism.Fil: Keller, Kirsten. Universitat Zu Köln; AlemaniaFil: Maass, Martina. University Hospital of Cologne; AlemaniaFil: Dizayee, Sara. Universitat Zu Köln; AlemaniaFil: Leiss, Veronika. Eberhard Karls University Hospitals and Clinics; AlemaniaFil: Annala, Suvi. Universitat Zu Köln; AlemaniaFil: Köth, Jessica. Universitat Zu Köln; AlemaniaFil: Seemann, Wiebke K.. Universitat Zu Köln; AlemaniaFil: Müller Ehmsen, Jochen. Asklepios Klinik Altona; AlemaniaFil: Mohr, Klaus. Universitaet Bonn; AlemaniaFil: Nürnberg, Bernd. Eberhard Karls University Hospitals and Clinics; AlemaniaFil: Engelhardt, Stefan. Universitat Technical Zu Munich; AlemaniaFil: Herzig, Stefan. Universitat Zu Köln; AlemaniaFil: Birnbaumer, Lutz. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Matthes, Jan. Universitat Zu Köln; Alemani

    Single-channel gating in WT and Gα<sub>i3</sub><sup>−/−</sup> myocytes.

    No full text
    <p>Analysis of single-channel gating parameters in ventricular myocytes from WT (n = 7) and Gα<sub>i3</sub><sup>−/−</sup> (n = 6) mice. Recordings with more than one channel were excluded from the analysis. i: unitary current; I<sub>peak</sub>: peak ensemble average current; f<sub>active</sub>: fraction of traces showing at least one opening; P<sub>open</sub>: open probability in active traces; t<sub>open</sub>: mean duration of openings; τ<sub>open</sub>: dwell time constant of the open state; t<sub>closed</sub>: mean duration between two consecutive openings; τ<sub>closed,1</sub>: dwell time constant of the fast closed time component; τ<sub>closed,2</sub>: dwell time constant of the slow closed time component; proportion: ratio of events conferring to either the fast or the slow closed time component; fl: mean latency until the first opening.</p><p>*: p<0.05 vs. WT.</p
    corecore