67 research outputs found

    COMPARE CPM-RMI Trial: Intramyocardial transplantation of autologous bone marrow-derived CD133+ Cells and MNCs during CABG in patients with recent MI: A Phase II/III, multicenter, placebo-controlled, randomized, double-blind clinical trial

    Get PDF
    Objective: The regenerative potential of bone marrow-derived mononuclear cells (MNCs) and CD133+ stem cells in the heart varies in terms of their pro-angiogenic effects. This phase II/III, multicenter and double-blind trial is designed to compare the functional effects of intramyocardial autologous transplantation of both cell types and placebo in patients with recent myocardial infarction (RMI) post-coronary artery bypass graft. Materials and Methods: This was a phase II/III, randomized, double-blind, placebo-controlled trial COMPARE CPM-RMI (CD133, Placebo, MNCs - recent myocardial infarction) conducted in accordance with the Declaration of Helsinki that assessed the safety and efficacy of CD133 and MNCs compared to placebo in patients with RMI. We randomly assigned 77 eligible RMI patients selected from 5 hospitals to receive CD133+ cells, MNC, or a placebo. Patients underwent gated single photon emission computed tomography assessments at 6 and 18 months post-intramyocardial transplantation. We tested the normally distributed efficacy outcomes with a mixed analysis of variance model that used the entire data set of baseline and between-group comparisons as well as within subject (time) and group�time interaction terms. Results: There were no related serious adverse events reported. The intramyocardial transplantation of both cell types increased left ventricular ejection fraction by 9 95% confidence intervals (CI): 2.14% to 15.78%, P=0.01 and improved decreased systolic wall thickening by -3.7 (95% CI: -7.07 to -0.42, P=0.03). The CD133 group showed significantly decreased non-viable segments by 75% (P=0.001) compared to the placebo and 60% (P=0.01) compared to the MNC group. We observed this improvement at both the 6- and 18-month time points. Conclusion: Intramyocardial injections of CD133+ cells or MNCs appeared to be safe and efficient with superiority of CD133+ cells for patients with RMI. Although the sample size precluded a definitive statement about clinical outcomes, these results have provided the basis for larger studies to confirm definitive evidence about the efficacy of these cell types (Registration Number: NCT01167751). © 2018 Royan Institute (ACECR). All Rights Reserved

    A study on the constitutive equation effects in the fracture initiation of AA5450 sheets

    No full text
    © Springer Nature Singapore Pte Ltd. 2019.Determination of the fracture initiation in the sheet metal forming applications can be achieved successfully using ductile fracture criteria (DFCs) and finite element codes together. In this study three different uncoupled, energy based ductile fracture criteria have been employed to predict the onset of the fracture in the AA5450 aluminum alloy sheets. Also, two different constitutive models namely, isotropic von-Mises and anisotropic Hill, have been implemented to the finite element code ABAQUS through VUMAT subroutine to investigate the effect of constitutive equations on the applicability of the utilized DFCs. It was shown that the constitutive model has significant influence on the estimation of the time and place of the fracture initiation in the sheets

    Thickness Dependence of Structural and Optical Properties of CdTe Films

    No full text
    In this work, Cadmium Telluride (CdTe) thin films were deposited on glass substrates at room temperature by vacuum evaporation technique. The deposited CdTe thin films were characterized by X-ray diffraction, UV-Visible spectroscopy and Field emission scanning electron microscope (FESEM) techniques. Structural studies revealed that the CdTe films deposited at various thicknesses are crystallized in cubic structure. The results showed the improvement of the film crystallinity upon grain size increment. Optical constants such as refractive index (n), extinction coefficient (k), real and imaginary parts of dielectric constant, volume energy loss function (VELF), and surface energy loss function (SELF) were calculated using UV-Vis spectra. In addition, band gap and Urbach energies were calculated by Tauc and ASF methods. The band gap energy of the specimens was found to decrease from 1.8 to 1.4eV with increasing the thickness of films. The absorption coefficient, computed and plotted versus the photon energy (hν) and tailing in the optical band gap, was observed which is understood based on Urbach law. Urbach energy variation from 0.125 to 0.620 eV in the samples with higher thicknesses is concluded. &nbsp

    Oxygen doping effect on wettability of diamond-like carbon films

    No full text
    DLC films were deposited on Ge substrates using direct ion beam deposition method, followed by investigating the influence of O _2 doping on their morphological, electrical, and structural properties. The films were doped with oxygen under flow rates of 5, 10, 20, and 40 sccm (standard cubic centimeters per minute). The structure of the films was studied by Raman spectroscopy. Result showed that by increasing oxygen incorporation, sp ^2 content decreases, sp ^3 content increases, and the C-C bonding loses its order. The hydrophilicity of the layers was analyzed by the contact angle measuring experiment. The results showed that by increasing the O _2 flow ratio from 5 to 40 sccm, the percentage of O _2 increases from 1.1 to 3.9%. The water contact angle measurement showed that an increase in oxygen flow ratio results in a decrease in contact angle from 82.9° ± 2.1° to 50° ± 3°

    Toxicological assessment of 3-monochloropropane-1,2-diol (3-MCPD) as a main contaminant of foodstuff in three different in vitro models: Involvement of oxidative stress and cell death signaling pathway

    No full text
    3-Monochloropropane-1,2-diol (3-MCPD) as a main source of food contamination has always been known as a carcinogenic agent. Kidney, liver, testis, and heart seem to be the main target organs for 3-MCPD. Because oxidative stress and mitochondrial dysfunction have been realized to be involved in 3-MCPD-induced cytotoxicity, the present study aimed to investigate the probable toxicity mechanisms of 3-MCPD in isolated mitochondria, HEK-293 cell line, and cell isolated from the ratsâ�� liver and kidney through measuring multiparametric oxidative stress assay. Based on the data indicating no significant difference between 3-MCPD-treated groups and control group, metabolites of 3-MCPD have a key role in organ toxicity caused by them. To further investigating the suggested hypothesis, the effect of 3-MCPD toxicity on HEK-293 cell line was examined. Although the proliferation declined after exposure to a low dose of 3-MCPD (10 to 200 µM), controversial responses in higher concentration (2 to 10 mM) have led to studies on the effect of oxidative stress and cell death signaling on isolated kidney and liver cells. Treatment of the isolated kidney and liver cells with 3-MCPD resulted in an increase in the level of reactive oxygen species (ROS), the collapse of mitochondrial membrane potential (MMP), and activation of cell death signaling without creating any significant difference in the amount of reduced glutathione. In fact, 3-MCPD can disrupt the mitochondrial electron transfer in isolated cells, which is correlated with the impairment of mitochondrial oxidative phosphorylation system, the rise of ROS level, and the failure of MMP, leading to the release of cytochrome c from mitochondria to cytosol and finally the activation of cell death signaling. © 2020 Institute of Food TechnologistsÂ

    The use of immunoglobulin therapy in primary immunodeficiency diseases

    No full text
    Immunoglobulin therapy represents a lifesaving intervention for many patients with primary immunodeficiency (PID). Antibody defects represent approximately half of the well-known PIDs requiring immunoglobulin replacement therapy. Following immunoglobulin therapy in PID patients, protection against serious upper and lower respiratory tract infections and pulmonary function improves which leads to an increase in the quality of life of these patients. Successful treatment of PID patients depends on the type of immunodeficiency, regular monitoring of the patient, comorbidities of the patient, and the availability of the products. © 2016 Bentham Science Publishers
    corecore