174 research outputs found

    The Hot Bang state of massless fermions

    Get PDF
    In 2002, a method has been proposed by Buchholz et al. in the context of Local Quantum Physics, to characterize states that are locally in thermodynamic equilibrium. It could be shown for the model of massless bosons that these states exhibit quite interesting properties. The mean phase-space density satisfies a transport equation, and many of these states break time reversal symmetry. Moreover, an explicit example of such a state, called the Hot Bang state, could be found, which models the future of a temperature singularity. However, although the general results carry over to the fermionic case easily, the proof of existence of an analogue of the Hot Bang state is not quite that straightforward. The proof will be given in this paper. Moreover, we will discuss some of the mathematical subtleties which arise in the fermionic case.Comment: 17 page

    Multipole particle in relativity

    Full text link
    We discuss the motion of extended objects in a spacetime by considering a gravitational field created by these objects. We define multipole moments of the objects as a classification by Lie group SO(3). Then, we construct an energy-momentum tensor for the objects and derive equations of motion from it. As a result, we reproduce the Papapetrou equations for a spinning particle. Furthermore, we will show that we can obtain more simple equations than the Papapetrou equations by changing the center-of-mass.Comment: 22 pages, 2 figures. Accepted for publication in Phys. Rev.

    Lagrangian description of world-line deviations

    Full text link
    We introduce a Lagrangian which can be varied to give both the equation of motion and world-line deviations of spinning particles simultaneously.Comment: to appear in IJT

    General relativistic spinning fluids with a modified projection tensor

    Full text link
    An energy-momentum tensor for general relativistic spinning fluids compatible with Tulczyjew-type supplementary condition is derived from the variation of a general Lagrangian with unspecified explicit form. This tensor is the sum of a term containing the Belinfante-Rosenfeld tensor and a modified perfect-fluid energy-momentum tensor in which the four-velocity is replaced by a unit four-vector in the direction of fluid momentum. The equations of motion are obtained and it is shown that they admit a Friedmann-Robertson-Walker space-time as a solution.Comment: Submitted to General Relativity and Gravitatio

    Stringy Probe Particle and Force Balance

    Get PDF
    We directly derive the classical equation of motion, which governs the centre of mass of a test string, from the string action. In a certain case, the equation is basically same as one derived by Papapetrou, Dixon and Wald for a test extended body. We also discuss the force balance using a stringy probe particle for an exact spinning multi-soliton solution of Einstein-Maxwell-Dilaton-Axion theory. It is well known that the force balance condition yields the saturation of the Bogomol'nyi type bound in the lowest order. In the present formulation the gyromagnetic ratio of the stringy probe particle is automatically determined to be g=2g=2 which is the same value as the background soliton. As a result we can confirm the force balance via the gravitational spin-spin interaction.Comment: 8 pages, references added, comments added, Phys. Rev. D accepte

    Torsion-induced spin precession

    Full text link
    We investigate the motion of a spinning test particle in a spatially-flat FRW-type space-time in the framework of the Einstein-Cartan theory. The space-time has a torsion arising from a spinning fluid filling the space-time. We show that for spinning particles with nonzero transverse spin components, the torsion induces a precession of particle spin around the direction of the fluid spin. We also show that a charged spinning particle moving in a torsion-less spatially-flat FRW space-time in the presence of a uniform magnetic field undergoes a precession of a different character.Comment: latex, 4 eps figure

    A survey of spinning test particle orbits in Kerr spacetime

    Get PDF
    We investigate the dynamics of the Papapetrou equations in Kerr spacetime. These equations provide a model for the motion of a relativistic spinning test particle orbiting a rotating (Kerr) black hole. We perform a thorough parameter space search for signs of chaotic dynamics by calculating the Lyapunov exponents for a large variety of initial conditions. We find that the Papapetrou equations admit many chaotic solutions, with the strongest chaos occurring in the case of eccentric orbits with pericenters close to the limit of stability against plunge into a maximally spinning Kerr black hole. Despite the presence of these chaotic solutions, we show that physically realistic solutions to the Papapetrou equations are not chaotic; in all cases, the chaotic solutions either do not correspond to realistic astrophysical systems, or involve a breakdown of the test-particle approximation leading to the Papapetrou equations (or both). As a result, the gravitational radiation from bodies spiraling into much more massive black holes (as detectable, for example, by LISA, the Laser Interferometer Space Antenna) should not exhibit any signs of chaos.Comment: Submitted to Phys. Rev. D. Follow-up to gr-qc/0210042. Figures are low-resolution in order to satisfy archive size constraints; a high-resolution version is available at http://www.michaelhartl.com/papers

    Action principle formulation for motion of extended bodies in General Relativity

    Get PDF
    We present an action principle formulation for the study of motion of an extended body in General Relativity in the limit of weak gravitational field. This gives the classical equations of motion for multipole moments of arbitrary order coupling to the gravitational field. In particular, a new force due to the octupole moment is obtained. The action also yields the gravitationally induced phase shifts in quantum interference experiments due to the coupling of all multipole moments.Comment: Revised version derives Octupole moment force. Some clarifications and a reference added. To appear in Phys. Rev.

    Spinning particles in Schwarzschild-de Sitter space-time

    Full text link
    After considering the reference case of the motion of spinning test bodies in the equatorial plane of the Schwarzschild space-time, we generalize the results to the case of the motion of a spinning particle in the equatorial plane of the Schwarzschild-de Sitter space-time. Specifically, we obtain the loci of turning points of the particle in this plane. We show that the cosmological constant affect the particle motion when the particle distance from the black hole is of the order of the inverse square root of the cosmological constant.Comment: 8 pages, 5 eps figures, submitted to Gen.Rel.Gra

    The metallic state in disordered quasi-one-dimensional conductors

    Get PDF
    The unusual metallic state in conjugated polymers and single-walled carbon nanotubes is studied by dielectric spectroscopy (8--600 GHz). We have found an intriguing correlation between scattering time and plasma frequency. This relation excludes percolation models of the metallic state. Instead, the carrier dynamics can be understood in terms of the low density of delocalized states around the Fermi level, which arises from the competion between disorder-induced localization and interchain-interactions-induced delocalization.Comment: 4 pages including 4 figure
    corecore