15,554 research outputs found

    Reliable routing scheme for indoor sensor networks

    Get PDF
    Indoor Wireless sensor networks require a highly dynamic, adaptive routing scheme to deal with the high rate of topology changes due to fading of indoor wireless channels. Besides that, energy consumption rate needs to be consistently distributed among sensor nodes and efficient utilization of battery power is essential. If only the link reliability metric is considered in the routing scheme, it may create long hops routes, and the high quality paths will be frequently used. This leads to shorter lifetime of such paths; thereby the entire network's lifetime will be significantly minimized. This paper briefly presents a reliable load-balanced routing (RLBR) scheme for indoor ad hoc wireless sensor networks, which integrates routing information from different layers. The proposed scheme aims to redistribute the relaying workload and the energy usage among relay sensor nodes to achieve balanced energy dissipation; thereby maximizing the functional network lifetime. RLBR scheme was tested and benchmarked against the TinyOS-2.x implementation of MintRoute on an indoor testbed comprising 20 Mica2 motes and low power listening (LPL) link layer provided by CC1000 radio. RLBR scheme consumes less energy for communications while reducing topology repair latency and achieves better connectivity and communication reliability in terms of end-to-end packets delivery performance

    Application of near infrared reflectance spectroscopy in screening of fresh cassava (Manihot esculenta crantz) storage roots for provitamin A carotenoids

    Get PDF
    A developed Near Infrared Reflectance Spectroscopy (NIRS) calibration equation was used for determining provitamin A carotenoids contents of different trials of fresh yellow root cassava genotypes using a total of 50 cassava genotypes scanned twice by NIRS from 400 nm to 2498 nm. The NIRS calibration equations were used to predict the β-cryptoxanthin, 13-cis β-carotene, trans β-carotene, 9-cis β -carotene, total β-carotene and total carotenoid concentrations of the samples. The predicted values for total carotenoids (TC-pred) ranged from 3.93 μg g–1 to 10.51 μg g–1 with mean of 7.07 ± 2.55 μg g–1 for International Collaborative Trials (ICT), 7.97–11.03 μg g–1 fresh weight with mean of 9.40 ± 0.76 μg g–1 for yellow root trial 8 (Multi-location Uniform Yield Trial) and 6.38–10.44 μg g–1 with mean of 8.74 ± 1.07 μg g–1 for yellow root trial 9 (Multilocation Advanced Yield Trial). Total carotenoids results using reference spectrophotometric method (TC-spec) ranged from 2.57 μg g–1 to 9.97 μg g–1 with mean of 5.66 ± 2.99 μg g–1 for ICT, 6.55–8.74 μg g–1 with mean of 7.74 ± 0.64 μg g–1 for yellow root trial 8 and 4.22–11.00 μg g–1 with mean of 7.57 ± 1.54 μg g–1 for yellow root trail 9. There is significant (P ≤ 0.001) positive correlation (r = 0.55) between TC-pred by NIRS and TC-spec. Also, significant (P ≤ 0.001) positive correlation (r = 0.52) exist between trans β-carotene predicted by NIRS and high-performance liquid chromatography reference. The developed NIRS calibration equations could be used to predict total carotenoids and trans β-carotene content of yellow root cassava and serve as rapid and cost-effective screening method for large cassava sample sets

    A New Measurement of the Average FUV Extinction Curve

    Get PDF
    We have measured the extinction curve in the far-ultraviolet wavelength region of (900 -- 1200 A) using spectra obtained with the Berkeley EUV/FUV spectrometer during the ORFEUS-I and the ORFEUS-II missions in 1993 and 1996. From the complete sample of early-type stars observed during these missions, we have selected pairs of stars with the same spectral type but different reddenings to measure the differential FUV extinction. We model the effects of molecular hydrogen absorption and exclude affected regions of the spectrum to determine the extinction from dust alone. We minimize errors from inaccuracies in the cataloged spectral types of the stars by making our own determinations of spectral types based on their IUE spectra. We find substantial scatter in the curves of individual star pairs and present a detailed examination of the uncertainties and their effects on each extinction curve. We find that, given the potentially large uncertainties inherent in using the pair method at FUV wavelengths, a careful analysis of measurement uncertainties is critical to assessing the true dust extinction. We present a new measurement of the average far-ultraviolet extinction curve to the Lyman limit; our new measurement is consistent with an extrapolation of the standard extinction curve of Savage & Mathis (1979).Comment: 13 pages text, 7 figures 4 tables. Sent as gzipped tar, with ms.tex and 7 figure

    Realization of an all-optical zero to π cross-phase modulation jump

    Get PDF
    We report on the experimental demonstration of an all-optical π cross-phase modulation jump. By performing a preselection, an optically induced unitary transformation, and then a postselection on the polarization degree of freedom, the phase of the output beam acquires either a zero or π phase shift (with no other possible values). The postselection results in optical loss in the output beam. An input state may be chosen near the resulting phase singularity, yielding a pi phase shift even for weak interaction strengths. The scheme is experimentally demonstrated using a coherently prepared dark state in a warm atomic cesium vapor

    D-term Inflation and Nonperturbative Kahler Potential of Dilaton

    Full text link
    We study the DD-term inflation scenario with a nonperturbative K\"ahler potential of the dilaton field. Although the FI term which leads an inflationary expansion is given by the derivative of the K\"ahler potential with respect to the dilaton in heterotic string models with anomalous U(1), the too large magnitude is problematic for a viable DD-term inflation. In this paper, we point out that the K\"ahler potential with a nonperturbative term can reduce the magnitude of FI term to desired values while both the dilaton stabilization and DD-term domination in the potential are realized by nonperturbative superpotential.Comment: 13 pages, latex, 3 figure

    Mirror Symmetry, Mirror Map and Applications to Calabi-Yau Hypersurfaces

    Full text link
    Mirror Symmetry, Picard-Fuchs equations and instanton corrected Yukawa couplings are discussed within the framework of toric geometry. It allows to establish mirror symmetry of Calabi-Yau spaces for which the mirror manifold had been unavailable in previous constructions. Mirror maps and Yukawa couplings are explicitly given for several examples with two and three moduli.Comment: 59 pages. Some changes in the references, a few minor points have been clarifie

    Microbial ecology of Thiobacillus ferrooxidans

    Get PDF
    FINAL TECHNICAL REPORT TO U.S. DEPARTMENT OF THE INTERIOR Geological Survey Washington. D.C.The contents of this report were developed in part under a grant from the Department of the Interior, U.S. Geological Survey. Grant number 14-08-0001-61313

    Innermost Stable Circular Orbit of a Spinning Particle in Kerr Spacetime

    Get PDF
    We study stability of a circular orbit of a spinning test particle in a Kerr spacetime. We find that some of the circular orbits become unstable in the direction perpendicular to the equatorial plane, although the orbits are still stable in the radial direction. Then for the large spin case ($S < \sim O(1)), the innermost stable circular orbit (ISCO) appears before the minimum of the effective potential in the equatorial plane disappears. This changes the radius of ISCO and then the frequency of the last circular orbit.Comment: 25 pages including 8 figure

    Fuels treatment and wildfire effects on runoff from Sierra Nevada mixed-conifer forests

    Get PDF
    We applied an eco-hydrologic model (Regional Hydro-Ecologic Simulation System [RHESSys]), constrained with spatially distributed field measurements, to assess the impacts of forest-fuel treatments and wildfire on hydrologic fluxes in two Sierra Nevada firesheds. Strategically placed fuels treatments were implemented during 2011–2012 in the upper American River in the central Sierra Nevada (43 km2) and in the upper Fresno River in the southern Sierra Nevada (24 km2). This study used the measured vegetation changes from mechanical treatments and modelled vegetation change from wildfire to determine impacts on the water balance. The well-constrained headwater model was transferred to larger catchments based on geologic and hydrologic similarities. Fuels treatments covered 18% of the American and 29% of the Lewis catchment. Averaged over the entire catchment, treatments in the wetter central Sierra Nevada resulted in a relatively light vegetation decrease (8%), leading to a 12% runoff increase, averaged over wet and dry years. Wildfire with and without forest treatments reduced vegetation by 38% and 50% and increased runoff by 55% and 67%, respectively. Treatments in the drier southern Sierra Nevada also reduced the spatially averaged vegetation by 8%, but the runoff response was limited to an increase of less than 3% compared with no treatment. Wildfire following treatments reduced vegetation by 40%, increasing runoff by 13%. Changes to catchment-scale water-balance simulations were more sensitive to canopy cover than to leaf area index, indicating that the pattern as well as amount of vegetation treatment is important to hydrologic response

    Self-forces on extended bodies in electrodynamics

    Full text link
    In this paper, we study the bulk motion of a classical extended charge in flat spacetime. A formalism developed by W. G. Dixon is used to determine how the details of such a particle's internal structure influence its equations of motion. We place essentially no restrictions (other than boundedness) on the shape of the charge, and allow for inhomogeneity, internal currents, elasticity, and spin. Even if the angular momentum remains small, many such systems are found to be affected by large self-interaction effects beyond the standard Lorentz-Dirac force. These are particularly significant if the particle's charge density fails to be much greater than its 3-current density (or vice versa) in the center-of-mass frame. Additional terms also arise in the equations of motion if the dipole moment is too large, and when the `center-of-electromagnetic mass' is far from the `center-of-bare mass' (roughly speaking). These conditions are often quite restrictive. General equations of motion were also derived under the assumption that the particle can only interact with the radiative component of its self-field. These are much simpler than the equations derived using the full retarded self-field; as are the conditions required to recover the Lorentz-Dirac equation.Comment: 30 pages; significantly improved presentation; accepted for publication in Phys. Rev.
    • …
    corecore