19,568 research outputs found
Communications satellite systems operations with the space station. Volume 1: Executive summary
The benefits of new space-based activities are quantified and the impacts on the satellite design and the space station are assessed
Swimming in curved space or The Baron and the cat
We study the swimming of non-relativistic deformable bodies in (empty) static
curved spaces. We focus on the case where the ambient geometry allows for rigid
body motions. In this case the swimming equations turn out to be geometric. For
a small swimmer, the swimming distance in one stroke is determined by the
Riemann curvature times certain moments of the swimmer.Comment: 19 pages 6 figure
Speckle-visibility spectroscopy: A tool to study time-varying dynamics
We describe a multispeckle dynamic light scattering technique capable of
resolving the motion of scattering sites in cases that this motion changes
systematically with time. The method is based on the visibility of the speckle
pattern formed by the scattered light as detected by a single exposure of a
digital camera. Whereas previous multispeckle methods rely on correlations
between images, here the connection with scattering site dynamics is made more
simply in terms of the variance of intensity among the pixels of the camera for
the specified exposure duration. The essence is that the speckle pattern is
more visible, i.e. the variance of detected intensity levels is greater, when
the dynamics of the scattering site motion is slow compared to the exposure
time of the camera. The theory for analyzing the moments of the spatial
intensity distribution in terms of the electric field autocorrelation is
presented. It is demonstrated for two well-understood samples, a colloidal
suspension of Brownian particles and a coarsening foam, where the dynamics can
be treated as stationary. However, the method is particularly appropriate for
samples in which the dynamics vary with time, either slowly or rapidly, limited
only by the exposure time fidelity of the camera. Potential applications range
from soft-glassy materials, to granular avalanches, to flowmetry of living
tissue.Comment: review - theory and experimen
Twistfield Perturbations of Vertex Operators in the Z_2-Orbifold Model
We apply Kadanoff's theory of marginal deformations of conformal field
theories to twistfield deformations of Z_2 orbifold models in K3 moduli space.
These deformations lead away from the Z_2 orbifold sub-moduli-space and hence
help to explore conformal field theories which have not yet been understood. In
particular, we calculate the deformation of the conformal dimensions of vertex
operators for p^2<1 in second order perturbation theory.Comment: Latex2e, 19 pages, 1 figur
Interferometric weak value deflections: quantum and classical treatments
We derive the weak value deflection given in a paper by Dixon et al. (Phys.
Rev. Lett. 102, 173601 (2009)) both quantum mechanically and classically. This
paper is meant to cover some of the mathematical details omitted in that paper
owing to space constraints
Speckle visibility spectroscopy and variable granular fluidization
We introduce a dynamic light scattering technique capable of resolving motion
that changes systematically, and rapidly, with time. It is based on the
visibility of a speckle pattern for a given exposure duration. Applying this to
a vibrated layer of glass beads, we measure the granular temperature and its
variation with phase in the oscillation cycle. We observe several transitions
involving jammed states, where the grains are at rest during some portion of
the cycle. We also observe a two-step decay of the temperature on approach to
jamming.Comment: 4 pages, 4 figures, experimen
Iteration of Planar Amplitudes in Maximally Supersymmetric Yang-Mills Theory at Three Loops and Beyond
We compute the leading-color (planar) three-loop four-point amplitude of N=4
supersymmetric Yang-Mills theory in 4 - 2 epsilon dimensions, as a Laurent
expansion about epsilon = 0 including the finite terms. The amplitude was
constructed previously via the unitarity method, in terms of two Feynman loop
integrals, one of which has been evaluated already. Here we use the
Mellin-Barnes integration technique to evaluate the Laurent expansion of the
second integral. Strikingly, the amplitude is expressible, through the finite
terms, in terms of the corresponding one- and two-loop amplitudes, which
provides strong evidence for a previous conjecture that higher-loop planar N =
4 amplitudes have an iterative structure. The infrared singularities of the
amplitude agree with the predictions of Sterman and Tejeda-Yeomans based on
resummation. Based on the four-point result and the exponentiation of infrared
singularities, we give an exponentiated ansatz for the maximally
helicity-violating n-point amplitudes to all loop orders. The 1/epsilon^2 pole
in the four-point amplitude determines the soft, or cusp, anomalous dimension
at three loops in N = 4 supersymmetric Yang-Mills theory. The result confirms a
prediction by Kotikov, Lipatov, Onishchenko and Velizhanin, which utilizes the
leading-twist anomalous dimensions in QCD computed by Moch, Vermaseren and
Vogt. Following similar logic, we are able to predict a term in the three-loop
quark and gluon form factors in QCD.Comment: 54 pages, 7 figures. v2: Added references, a few additional words
about large spin limit of anomalous dimensions. v3: Expanded Sect. IV.A on
multiloop ansatz; remark that form-factor prediction is now confirmed by
other work; minor typos correcte
Three-Loop Superfiniteness of N=8 Supergravity
We construct the three-loop four-point amplitude of N=8 supergravity using
the unitarity method. The amplitude is ultraviolet finite in four dimensions.
Novel cancellations, not predicted by traditional superspace power-counting
arguments, render its degree of divergence in D dimensions to be no worse than
that of N=4 super-Yang-Mills theory -- a finite theory in four dimensions.
Similar cancellations can be identified at all loop orders in certain unitarity
cuts, suggesting that N=8 supergravity may be a perturbatively finite theory of
quantum gravity.Comment: 5 pages, 4 figures. In v2 references and minor clarifications adde
- …